1668 lines
54 KiB
Go
1668 lines
54 KiB
Go
|
package gocv
|
|||
|
|
|||
|
/*
|
|||
|
#include <stdlib.h>
|
|||
|
#include "imgproc.h"
|
|||
|
*/
|
|||
|
import "C"
|
|||
|
import (
|
|||
|
"image"
|
|||
|
"image/color"
|
|||
|
"reflect"
|
|||
|
"unsafe"
|
|||
|
)
|
|||
|
|
|||
|
func getPoints(pts *C.Point, l int) []C.Point {
|
|||
|
h := &reflect.SliceHeader{
|
|||
|
Data: uintptr(unsafe.Pointer(pts)),
|
|||
|
Len: l,
|
|||
|
Cap: l,
|
|||
|
}
|
|||
|
return *(*[]C.Point)(unsafe.Pointer(h))
|
|||
|
}
|
|||
|
|
|||
|
// ArcLength calculates a contour perimeter or a curve length.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
//
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga8d26483c636be6b35c3ec6335798a47c
|
|||
|
//
|
|||
|
func ArcLength(curve []image.Point, isClosed bool) float64 {
|
|||
|
cPoints := toCPoints(curve)
|
|||
|
arcLength := C.ArcLength(cPoints, C.bool(isClosed))
|
|||
|
return float64(arcLength)
|
|||
|
}
|
|||
|
|
|||
|
// ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
//
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga0012a5fdaea70b8a9970165d98722b4c
|
|||
|
//
|
|||
|
func ApproxPolyDP(curve []image.Point, epsilon float64, closed bool) (approxCurve []image.Point) {
|
|||
|
cCurve := toCPoints(curve)
|
|||
|
|
|||
|
cApproxCurve := C.ApproxPolyDP(cCurve, C.double(epsilon), C.bool(closed))
|
|||
|
defer C.Points_Close(cApproxCurve)
|
|||
|
|
|||
|
cApproxCurvePoints := getPoints(cApproxCurve.points, int(cApproxCurve.length))
|
|||
|
|
|||
|
approxCurve = make([]image.Point, cApproxCurve.length)
|
|||
|
for i, cPoint := range cApproxCurvePoints {
|
|||
|
approxCurve[i] = image.Pt(int(cPoint.x), int(cPoint.y))
|
|||
|
}
|
|||
|
return approxCurve
|
|||
|
}
|
|||
|
|
|||
|
// ConvexHull finds the convex hull of a point set.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga014b28e56cb8854c0de4a211cb2be656
|
|||
|
//
|
|||
|
func ConvexHull(points []image.Point, hull *Mat, clockwise bool, returnPoints bool) {
|
|||
|
cPoints := toCPoints(points)
|
|||
|
C.ConvexHull(cPoints, hull.p, C.bool(clockwise), C.bool(returnPoints))
|
|||
|
}
|
|||
|
|
|||
|
// ConvexityDefects finds the convexity defects of a contour.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gada4437098113fd8683c932e0567f47ba
|
|||
|
//
|
|||
|
func ConvexityDefects(contour []image.Point, hull Mat, result *Mat) {
|
|||
|
cPoints := toCPoints(contour)
|
|||
|
C.ConvexityDefects(cPoints, hull.p, result.p)
|
|||
|
}
|
|||
|
|
|||
|
// CvtColor converts an image from one color space to another.
|
|||
|
// It converts the src Mat image to the dst Mat using the
|
|||
|
// code param containing the desired ColorConversionCode color space.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga4e0972be5de079fed4e3a10e24ef5ef0
|
|||
|
//
|
|||
|
func CvtColor(src Mat, dst *Mat, code ColorConversionCode) {
|
|||
|
C.CvtColor(src.p, dst.p, C.int(code))
|
|||
|
}
|
|||
|
|
|||
|
// EqualizeHist normalizes the brightness and increases the contrast of the image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga7e54091f0c937d49bf84152a16f76d6e
|
|||
|
func EqualizeHist(src Mat, dst *Mat) {
|
|||
|
C.EqualizeHist(src.p, dst.p)
|
|||
|
}
|
|||
|
|
|||
|
// CalcHist Calculates a histogram of a set of images
|
|||
|
//
|
|||
|
// For futher details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga6ca1876785483836f72a77ced8ea759a
|
|||
|
func CalcHist(src []Mat, channels []int, mask Mat, hist *Mat, size []int, ranges []float64, acc bool) {
|
|||
|
cMatArray := make([]C.Mat, len(src))
|
|||
|
for i, r := range src {
|
|||
|
cMatArray[i] = r.p
|
|||
|
}
|
|||
|
|
|||
|
cMats := C.struct_Mats{
|
|||
|
mats: (*C.Mat)(&cMatArray[0]),
|
|||
|
length: C.int(len(src)),
|
|||
|
}
|
|||
|
|
|||
|
chansInts := []C.int{}
|
|||
|
for _, v := range channels {
|
|||
|
chansInts = append(chansInts, C.int(v))
|
|||
|
}
|
|||
|
chansVector := C.struct_IntVector{}
|
|||
|
chansVector.val = (*C.int)(&chansInts[0])
|
|||
|
chansVector.length = (C.int)(len(chansInts))
|
|||
|
|
|||
|
sizeInts := []C.int{}
|
|||
|
for _, v := range size {
|
|||
|
sizeInts = append(sizeInts, C.int(v))
|
|||
|
}
|
|||
|
sizeVector := C.struct_IntVector{}
|
|||
|
sizeVector.val = (*C.int)(&sizeInts[0])
|
|||
|
sizeVector.length = (C.int)(len(sizeInts))
|
|||
|
|
|||
|
rangeFloats := []C.float{}
|
|||
|
for _, v := range ranges {
|
|||
|
rangeFloats = append(rangeFloats, C.float(v))
|
|||
|
}
|
|||
|
rangeVector := C.struct_FloatVector{}
|
|||
|
rangeVector.val = (*C.float)(&rangeFloats[0])
|
|||
|
rangeVector.length = (C.int)(len(rangeFloats))
|
|||
|
|
|||
|
C.CalcHist(cMats, chansVector, mask.p, hist.p, sizeVector, rangeVector, C.bool(acc))
|
|||
|
}
|
|||
|
|
|||
|
// CalcBackProject calculates the back projection of a histogram.
|
|||
|
//
|
|||
|
// For futher details, please see:
|
|||
|
// https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga3a0af640716b456c3d14af8aee12e3ca
|
|||
|
func CalcBackProject(src []Mat, channels []int, hist Mat, backProject *Mat, ranges []float64, uniform bool) {
|
|||
|
cMatArray := make([]C.Mat, len(src))
|
|||
|
for i, r := range src {
|
|||
|
cMatArray[i] = r.p
|
|||
|
}
|
|||
|
|
|||
|
cMats := C.struct_Mats{
|
|||
|
mats: (*C.Mat)(&cMatArray[0]),
|
|||
|
length: C.int(len(src)),
|
|||
|
}
|
|||
|
|
|||
|
chansInts := []C.int{}
|
|||
|
for _, v := range channels {
|
|||
|
chansInts = append(chansInts, C.int(v))
|
|||
|
}
|
|||
|
chansVector := C.struct_IntVector{}
|
|||
|
chansVector.val = (*C.int)(&chansInts[0])
|
|||
|
chansVector.length = (C.int)(len(chansInts))
|
|||
|
|
|||
|
rangeFloats := []C.float{}
|
|||
|
for _, v := range ranges {
|
|||
|
rangeFloats = append(rangeFloats, C.float(v))
|
|||
|
}
|
|||
|
rangeVector := C.struct_FloatVector{}
|
|||
|
rangeVector.val = (*C.float)(&rangeFloats[0])
|
|||
|
rangeVector.length = (C.int)(len(rangeFloats))
|
|||
|
|
|||
|
C.CalcBackProject(cMats, chansVector, hist.p, backProject.p, rangeVector, C.bool(uniform))
|
|||
|
}
|
|||
|
|
|||
|
// HistCompMethod is the method for Histogram comparison
|
|||
|
// For more information, see https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
|
|||
|
type HistCompMethod int
|
|||
|
|
|||
|
const (
|
|||
|
// HistCmpCorrel calculates the Correlation
|
|||
|
HistCmpCorrel HistCompMethod = 0
|
|||
|
|
|||
|
// HistCmpChiSqr calculates the Chi-Square
|
|||
|
HistCmpChiSqr = 1
|
|||
|
|
|||
|
// HistCmpIntersect calculates the Intersection
|
|||
|
HistCmpIntersect = 2
|
|||
|
|
|||
|
// HistCmpBhattacharya applies the HistCmpBhattacharya by calculating the Bhattacharya distance.
|
|||
|
HistCmpBhattacharya = 3
|
|||
|
|
|||
|
// HistCmpHellinger applies the HistCmpBhattacharya comparison. It is a synonym to HistCmpBhattacharya.
|
|||
|
HistCmpHellinger = HistCmpBhattacharya
|
|||
|
|
|||
|
// HistCmpChiSqrAlt applies the Alternative Chi-Square (regularly used for texture comparsion).
|
|||
|
HistCmpChiSqrAlt = 4
|
|||
|
|
|||
|
// HistCmpKlDiv applies the Kullback-Liebler divergence comparison.
|
|||
|
HistCmpKlDiv = 5
|
|||
|
)
|
|||
|
|
|||
|
// CompareHist Compares two histograms.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
|
|||
|
func CompareHist(hist1 Mat, hist2 Mat, method HistCompMethod) float32 {
|
|||
|
return float32(C.CompareHist(hist1.p, hist2.p, C.int(method)))
|
|||
|
}
|
|||
|
|
|||
|
// BilateralFilter applies a bilateral filter to an image.
|
|||
|
//
|
|||
|
// Bilateral filtering is described here:
|
|||
|
// http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
|
|||
|
//
|
|||
|
// BilateralFilter can reduce unwanted noise very well while keeping edges
|
|||
|
// fairly sharp. However, it is very slow compared to most filters.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
|
|||
|
//
|
|||
|
func BilateralFilter(src Mat, dst *Mat, diameter int, sigmaColor float64, sigmaSpace float64) {
|
|||
|
C.BilateralFilter(src.p, dst.p, C.int(diameter), C.double(sigmaColor), C.double(sigmaSpace))
|
|||
|
}
|
|||
|
|
|||
|
// Blur blurs an image Mat using a normalized box filter.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
|
|||
|
//
|
|||
|
func Blur(src Mat, dst *Mat, ksize image.Point) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(ksize.X),
|
|||
|
height: C.int(ksize.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.Blur(src.p, dst.p, pSize)
|
|||
|
}
|
|||
|
|
|||
|
// BoxFilter blurs an image using the box filter.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
|
|||
|
//
|
|||
|
func BoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
height: C.int(ksize.X),
|
|||
|
width: C.int(ksize.Y),
|
|||
|
}
|
|||
|
C.BoxFilter(src.p, dst.p, C.int(depth), pSize)
|
|||
|
}
|
|||
|
|
|||
|
// SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga045028184a9ef65d7d2579e5c4bff6c0
|
|||
|
//
|
|||
|
func SqBoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
height: C.int(ksize.X),
|
|||
|
width: C.int(ksize.Y),
|
|||
|
}
|
|||
|
C.SqBoxFilter(src.p, dst.p, C.int(depth), pSize)
|
|||
|
}
|
|||
|
|
|||
|
// Dilate dilates an image by using a specific structuring element.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga4ff0f3318642c4f469d0e11f242f3b6c
|
|||
|
//
|
|||
|
func Dilate(src Mat, dst *Mat, kernel Mat) {
|
|||
|
C.Dilate(src.p, dst.p, kernel.p)
|
|||
|
}
|
|||
|
|
|||
|
// DistanceTransformLabelTypes are the types of the DistanceTransform algorithm flag
|
|||
|
type DistanceTransformLabelTypes int
|
|||
|
|
|||
|
const (
|
|||
|
// DistanceLabelCComp assigns the same label to each connected component of zeros in the source image
|
|||
|
// (as well as all the non-zero pixels closest to the connected component).
|
|||
|
DistanceLabelCComp DistanceTransformLabelTypes = 0
|
|||
|
|
|||
|
// DistanceLabelPixel assigns its own label to each zero pixel (and all the non-zero pixels closest to it).
|
|||
|
DistanceLabelPixel
|
|||
|
)
|
|||
|
|
|||
|
// DistanceTransformMasks are the marsk sizes for distance transform
|
|||
|
type DistanceTransformMasks int
|
|||
|
|
|||
|
const (
|
|||
|
// DistanceMask3 is a mask of size 3
|
|||
|
DistanceMask3 DistanceTransformMasks = 0
|
|||
|
|
|||
|
// DistanceMask5 is a mask of size 3
|
|||
|
DistanceMask5
|
|||
|
|
|||
|
// DistanceMaskPrecise is not currently supported
|
|||
|
DistanceMaskPrecise
|
|||
|
)
|
|||
|
|
|||
|
// DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga8a0b7fdfcb7a13dde018988ba3a43042
|
|||
|
//
|
|||
|
func DistanceTransform(src Mat, dst *Mat, labels *Mat, distType DistanceTypes, maskSize DistanceTransformMasks, labelType DistanceTransformLabelTypes) {
|
|||
|
C.DistanceTransform(src.p, dst.p, labels.p, C.int(distType), C.int(maskSize), C.int(labelType))
|
|||
|
}
|
|||
|
|
|||
|
// Erode erodes an image by using a specific structuring element.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaeb1e0c1033e3f6b891a25d0511362aeb
|
|||
|
//
|
|||
|
func Erode(src Mat, dst *Mat, kernel Mat) {
|
|||
|
C.Erode(src.p, dst.p, kernel.p)
|
|||
|
}
|
|||
|
|
|||
|
// RetrievalMode is the mode of the contour retrieval algorithm.
|
|||
|
type RetrievalMode int
|
|||
|
|
|||
|
const (
|
|||
|
// RetrievalExternal retrieves only the extreme outer contours.
|
|||
|
// It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for all the contours.
|
|||
|
RetrievalExternal RetrievalMode = 0
|
|||
|
|
|||
|
// RetrievalList retrieves all of the contours without establishing
|
|||
|
// any hierarchical relationships.
|
|||
|
RetrievalList = 1
|
|||
|
|
|||
|
// RetrievalCComp retrieves all of the contours and organizes them into
|
|||
|
// a two-level hierarchy. At the top level, there are external boundaries
|
|||
|
// of the components. At the second level, there are boundaries of the holes.
|
|||
|
// If there is another contour inside a hole of a connected component, it
|
|||
|
// is still put at the top level.
|
|||
|
RetrievalCComp = 2
|
|||
|
|
|||
|
// RetrievalTree retrieves all of the contours and reconstructs a full
|
|||
|
// hierarchy of nested contours.
|
|||
|
RetrievalTree = 3
|
|||
|
|
|||
|
// RetrievalFloodfill lacks a description in the original header.
|
|||
|
RetrievalFloodfill = 4
|
|||
|
)
|
|||
|
|
|||
|
// ContourApproximationMode is the mode of the contour approximation algorithm.
|
|||
|
type ContourApproximationMode int
|
|||
|
|
|||
|
const (
|
|||
|
// ChainApproxNone stores absolutely all the contour points. That is,
|
|||
|
// any 2 subsequent points (x1,y1) and (x2,y2) of the contour will be
|
|||
|
// either horizontal, vertical or diagonal neighbors, that is,
|
|||
|
// max(abs(x1-x2),abs(y2-y1))==1.
|
|||
|
ChainApproxNone ContourApproximationMode = 1
|
|||
|
|
|||
|
// ChainApproxSimple compresses horizontal, vertical, and diagonal segments
|
|||
|
// and leaves only their end points.
|
|||
|
// For example, an up-right rectangular contour is encoded with 4 points.
|
|||
|
ChainApproxSimple = 2
|
|||
|
|
|||
|
// ChainApproxTC89L1 applies one of the flavors of the Teh-Chin chain
|
|||
|
// approximation algorithms.
|
|||
|
ChainApproxTC89L1 = 3
|
|||
|
|
|||
|
// ChainApproxTC89KCOS applies one of the flavors of the Teh-Chin chain
|
|||
|
// approximation algorithms.
|
|||
|
ChainApproxTC89KCOS = 4
|
|||
|
)
|
|||
|
|
|||
|
// BoundingRect calculates the up-right bounding rectangle of a point set.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gacb413ddce8e48ff3ca61ed7cf626a366
|
|||
|
//
|
|||
|
func BoundingRect(contour []image.Point) image.Rectangle {
|
|||
|
cContour := toCPoints(contour)
|
|||
|
r := C.BoundingRect(cContour)
|
|||
|
rect := image.Rect(int(r.x), int(r.y), int(r.x+r.width), int(r.y+r.height))
|
|||
|
return rect
|
|||
|
}
|
|||
|
|
|||
|
// BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
|
|||
|
//
|
|||
|
// For further Details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gaf78d467e024b4d7936cf9397185d2f5c
|
|||
|
//
|
|||
|
func BoxPoints(rect RotatedRect, pts *Mat) {
|
|||
|
|
|||
|
rPoints := toCPoints(rect.Contour)
|
|||
|
|
|||
|
rRect := C.struct_Rect{
|
|||
|
x: C.int(rect.BoundingRect.Min.X),
|
|||
|
y: C.int(rect.BoundingRect.Min.Y),
|
|||
|
width: C.int(rect.BoundingRect.Max.X - rect.BoundingRect.Min.X),
|
|||
|
height: C.int(rect.BoundingRect.Max.Y - rect.BoundingRect.Min.Y),
|
|||
|
}
|
|||
|
|
|||
|
rCenter := C.struct_Point{
|
|||
|
x: C.int(rect.Center.X),
|
|||
|
y: C.int(rect.Center.Y),
|
|||
|
}
|
|||
|
|
|||
|
rSize := C.struct_Size{
|
|||
|
width: C.int(rect.Width),
|
|||
|
height: C.int(rect.Height),
|
|||
|
}
|
|||
|
|
|||
|
r := C.struct_RotatedRect{
|
|||
|
pts: rPoints,
|
|||
|
boundingRect: rRect,
|
|||
|
center: rCenter,
|
|||
|
size: rSize,
|
|||
|
angle: C.double(rect.Angle),
|
|||
|
}
|
|||
|
|
|||
|
C.BoxPoints(r, pts.p)
|
|||
|
}
|
|||
|
|
|||
|
// ContourArea calculates a contour area.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga2c759ed9f497d4a618048a2f56dc97f1
|
|||
|
//
|
|||
|
func ContourArea(contour []image.Point) float64 {
|
|||
|
cContour := toCPoints(contour)
|
|||
|
result := C.ContourArea(cContour)
|
|||
|
return float64(result)
|
|||
|
}
|
|||
|
|
|||
|
type RotatedRect struct {
|
|||
|
Contour []image.Point
|
|||
|
BoundingRect image.Rectangle
|
|||
|
Center image.Point
|
|||
|
Width int
|
|||
|
Height int
|
|||
|
Angle float64
|
|||
|
}
|
|||
|
|
|||
|
// MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9
|
|||
|
//
|
|||
|
func MinAreaRect(points []image.Point) RotatedRect {
|
|||
|
cPoints := toCPoints(points)
|
|||
|
result := C.MinAreaRect(cPoints)
|
|||
|
|
|||
|
defer C.Points_Close(result.pts)
|
|||
|
pArray := result.pts.points
|
|||
|
pLength := int(result.pts.length)
|
|||
|
|
|||
|
pHdr := reflect.SliceHeader{
|
|||
|
Data: uintptr(unsafe.Pointer(pArray)),
|
|||
|
Len: pLength,
|
|||
|
Cap: pLength,
|
|||
|
}
|
|||
|
sPoints := *(*[]C.Point)(unsafe.Pointer(&pHdr))
|
|||
|
|
|||
|
points4 := make([]image.Point, pLength)
|
|||
|
for j, pt := range sPoints {
|
|||
|
points4[j] = image.Pt(int(pt.x), int(pt.y))
|
|||
|
}
|
|||
|
|
|||
|
return RotatedRect{
|
|||
|
Contour: points4,
|
|||
|
BoundingRect: image.Rect(int(result.boundingRect.x), int(result.boundingRect.y), int(result.boundingRect.x)+int(result.boundingRect.width), int(result.boundingRect.y)+int(result.boundingRect.height)),
|
|||
|
Center: image.Pt(int(result.center.x), int(result.center.y)),
|
|||
|
Width: int(result.size.width),
|
|||
|
Height: int(result.size.height),
|
|||
|
Angle: float64(result.angle),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
|
|||
|
func MinEnclosingCircle(points []image.Point) (x, y, radius float32) {
|
|||
|
cPoints := toCPoints(points)
|
|||
|
cCenterPoint := C.struct_Point2f{}
|
|||
|
var cRadius C.float
|
|||
|
C.MinEnclosingCircle(cPoints, &cCenterPoint, &cRadius)
|
|||
|
x, y = float32(cCenterPoint.x), float32(cCenterPoint.y)
|
|||
|
radius = float32(cRadius)
|
|||
|
return x, y, radius
|
|||
|
}
|
|||
|
|
|||
|
// FindContours finds contours in a binary image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
|
|||
|
//
|
|||
|
func FindContours(src Mat, mode RetrievalMode, method ContourApproximationMode) [][]image.Point {
|
|||
|
ret := C.FindContours(src.p, C.int(mode), C.int(method))
|
|||
|
defer C.Contours_Close(ret)
|
|||
|
|
|||
|
cArray := ret.contours
|
|||
|
cLength := int(ret.length)
|
|||
|
cHdr := reflect.SliceHeader{
|
|||
|
Data: uintptr(unsafe.Pointer(cArray)),
|
|||
|
Len: cLength,
|
|||
|
Cap: cLength,
|
|||
|
}
|
|||
|
sContours := *(*[]C.Points)(unsafe.Pointer(&cHdr))
|
|||
|
|
|||
|
contours := make([][]image.Point, cLength)
|
|||
|
for i, pts := range sContours {
|
|||
|
pArray := pts.points
|
|||
|
pLength := int(pts.length)
|
|||
|
pHdr := reflect.SliceHeader{
|
|||
|
Data: uintptr(unsafe.Pointer(pArray)),
|
|||
|
Len: pLength,
|
|||
|
Cap: pLength,
|
|||
|
}
|
|||
|
sPoints := *(*[]C.Point)(unsafe.Pointer(&pHdr))
|
|||
|
|
|||
|
points := make([]image.Point, pLength)
|
|||
|
for j, pt := range sPoints {
|
|||
|
points[j] = image.Pt(int(pt.x), int(pt.y))
|
|||
|
}
|
|||
|
contours[i] = points
|
|||
|
}
|
|||
|
|
|||
|
return contours
|
|||
|
}
|
|||
|
|
|||
|
//ConnectedComponentsAlgorithmType specifies the type for ConnectedComponents
|
|||
|
type ConnectedComponentsAlgorithmType int
|
|||
|
|
|||
|
const (
|
|||
|
// SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity.
|
|||
|
CCL_WU ConnectedComponentsAlgorithmType = 0
|
|||
|
|
|||
|
// BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity.
|
|||
|
CCL_DEFAULT = 1
|
|||
|
|
|||
|
// BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity
|
|||
|
CCL_GRANA = 2
|
|||
|
)
|
|||
|
|
|||
|
// ConnectedComponents computes the connected components labeled image of boolean image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5
|
|||
|
//
|
|||
|
func ConnectedComponents(src Mat, labels *Mat) int {
|
|||
|
return int(C.ConnectedComponents(src.p, labels.p, C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT)))
|
|||
|
}
|
|||
|
|
|||
|
// ConnectedComponents computes the connected components labeled image of boolean image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5
|
|||
|
//
|
|||
|
func ConnectedComponentsWithParams(src Mat, labels *Mat, conn int, ltype MatType,
|
|||
|
ccltype ConnectedComponentsAlgorithmType) int {
|
|||
|
return int(C.ConnectedComponents(src.p, labels.p, C.int(conn), C.int(ltype), C.int(ccltype)))
|
|||
|
}
|
|||
|
|
|||
|
// ConnectedComponentsTypes are the connected components algorithm output formats
|
|||
|
type ConnectedComponentsTypes int
|
|||
|
|
|||
|
const (
|
|||
|
//The leftmost (x) coordinate which is the inclusive start of the bounding box in the horizontal direction.
|
|||
|
CC_STAT_LEFT = 0
|
|||
|
|
|||
|
//The topmost (y) coordinate which is the inclusive start of the bounding box in the vertical direction.
|
|||
|
CC_STAT_TOP = 1
|
|||
|
|
|||
|
// The horizontal size of the bounding box.
|
|||
|
CC_STAT_WIDTH = 2
|
|||
|
|
|||
|
// The vertical size of the bounding box.
|
|||
|
CC_STAT_HEIGHT = 3
|
|||
|
|
|||
|
// The total area (in pixels) of the connected component.
|
|||
|
CC_STAT_AREA = 4
|
|||
|
|
|||
|
CC_STAT_MAX = 5
|
|||
|
)
|
|||
|
|
|||
|
// ConnectedComponentsWithStats computes the connected components labeled image of boolean
|
|||
|
// image and also produces a statistics output for each label.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
|
|||
|
//
|
|||
|
func ConnectedComponentsWithStats(src Mat, labels *Mat, stats *Mat, centroids *Mat) int {
|
|||
|
return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p,
|
|||
|
C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT)))
|
|||
|
}
|
|||
|
|
|||
|
// ConnectedComponentsWithStats computes the connected components labeled image of boolean
|
|||
|
// image and also produces a statistics output for each label.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
|
|||
|
//
|
|||
|
func ConnectedComponentsWithStatsWithParams(src Mat, labels *Mat, stats *Mat, centroids *Mat,
|
|||
|
conn int, ltype MatType, ccltype ConnectedComponentsAlgorithmType) int {
|
|||
|
return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p, C.int(conn),
|
|||
|
C.int(ltype), C.int(ccltype)))
|
|||
|
}
|
|||
|
|
|||
|
// TemplateMatchMode is the type of the template matching operation.
|
|||
|
type TemplateMatchMode int
|
|||
|
|
|||
|
const (
|
|||
|
// TmSqdiff maps to TM_SQDIFF
|
|||
|
TmSqdiff TemplateMatchMode = 0
|
|||
|
// TmSqdiffNormed maps to TM_SQDIFF_NORMED
|
|||
|
TmSqdiffNormed = 1
|
|||
|
// TmCcorr maps to TM_CCORR
|
|||
|
TmCcorr = 2
|
|||
|
// TmCcorrNormed maps to TM_CCORR_NORMED
|
|||
|
TmCcorrNormed = 3
|
|||
|
// TmCcoeff maps to TM_CCOEFF
|
|||
|
TmCcoeff = 4
|
|||
|
// TmCcoeffNormed maps to TM_CCOEFF_NORMED
|
|||
|
TmCcoeffNormed = 5
|
|||
|
)
|
|||
|
|
|||
|
// MatchTemplate compares a template against overlapped image regions.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
|
|||
|
//
|
|||
|
func MatchTemplate(image Mat, templ Mat, result *Mat, method TemplateMatchMode, mask Mat) {
|
|||
|
C.MatchTemplate(image.p, templ.p, result.p, C.int(method), mask.p)
|
|||
|
}
|
|||
|
|
|||
|
// Moments calculates all of the moments up to the third order of a polygon
|
|||
|
// or rasterized shape.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga556a180f43cab22649c23ada36a8a139
|
|||
|
//
|
|||
|
func Moments(src Mat, binaryImage bool) map[string]float64 {
|
|||
|
r := C.Moments(src.p, C.bool(binaryImage))
|
|||
|
|
|||
|
result := make(map[string]float64)
|
|||
|
result["m00"] = float64(r.m00)
|
|||
|
result["m10"] = float64(r.m10)
|
|||
|
result["m01"] = float64(r.m01)
|
|||
|
result["m20"] = float64(r.m20)
|
|||
|
result["m11"] = float64(r.m11)
|
|||
|
result["m02"] = float64(r.m02)
|
|||
|
result["m30"] = float64(r.m30)
|
|||
|
result["m21"] = float64(r.m21)
|
|||
|
result["m12"] = float64(r.m12)
|
|||
|
result["m03"] = float64(r.m03)
|
|||
|
result["mu20"] = float64(r.mu20)
|
|||
|
result["mu11"] = float64(r.mu11)
|
|||
|
result["mu02"] = float64(r.mu02)
|
|||
|
result["mu30"] = float64(r.mu30)
|
|||
|
result["mu21"] = float64(r.mu21)
|
|||
|
result["mu12"] = float64(r.mu12)
|
|||
|
result["mu03"] = float64(r.mu03)
|
|||
|
result["nu20"] = float64(r.nu20)
|
|||
|
result["nu11"] = float64(r.nu11)
|
|||
|
result["nu02"] = float64(r.nu02)
|
|||
|
result["nu30"] = float64(r.nu30)
|
|||
|
result["nu21"] = float64(r.nu21)
|
|||
|
result["nu12"] = float64(r.nu12)
|
|||
|
result["nu03"] = float64(r.nu03)
|
|||
|
|
|||
|
return result
|
|||
|
}
|
|||
|
|
|||
|
// PyrDown blurs an image and downsamples it.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaf9bba239dfca11654cb7f50f889fc2ff
|
|||
|
//
|
|||
|
func PyrDown(src Mat, dst *Mat, ksize image.Point, borderType BorderType) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
height: C.int(ksize.X),
|
|||
|
width: C.int(ksize.Y),
|
|||
|
}
|
|||
|
C.PyrDown(src.p, dst.p, pSize, C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// PyrUp upsamples an image and then blurs it.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gada75b59bdaaca411ed6fee10085eb784
|
|||
|
//
|
|||
|
func PyrUp(src Mat, dst *Mat, ksize image.Point, borderType BorderType) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
height: C.int(ksize.X),
|
|||
|
width: C.int(ksize.Y),
|
|||
|
}
|
|||
|
C.PyrUp(src.p, dst.p, pSize, C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// MorphologyDefaultBorder returns "magic" border value for erosion and dilation.
|
|||
|
// It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga94756fad83d9d24d29c9bf478558c40a
|
|||
|
//
|
|||
|
func MorphologyDefaultBorderValue() Scalar {
|
|||
|
var scalar C.Scalar = C.MorphologyDefaultBorderValue()
|
|||
|
return NewScalar(float64(scalar.val1), float64(scalar.val2), float64(scalar.val3), float64(scalar.val4))
|
|||
|
}
|
|||
|
|
|||
|
// MorphologyEx performs advanced morphological transformations.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f
|
|||
|
//
|
|||
|
func MorphologyEx(src Mat, dst *Mat, op MorphType, kernel Mat) {
|
|||
|
C.MorphologyEx(src.p, dst.p, C.int(op), kernel.p)
|
|||
|
}
|
|||
|
|
|||
|
// MorphologyExWithParams performs advanced morphological transformations.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f
|
|||
|
//
|
|||
|
func MorphologyExWithParams(src Mat, dst *Mat, op MorphType, kernel Mat, iterations int, borderType BorderType) {
|
|||
|
pt := C.struct_Point{
|
|||
|
x: C.int(-1),
|
|||
|
y: C.int(-1),
|
|||
|
}
|
|||
|
C.MorphologyExWithParams(src.p, dst.p, C.int(op), kernel.p, pt, C.int(iterations), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// MorphShape is the shape of the structuring element used for Morphing operations.
|
|||
|
type MorphShape int
|
|||
|
|
|||
|
const (
|
|||
|
// MorphRect is the rectangular morph shape.
|
|||
|
MorphRect MorphShape = 0
|
|||
|
|
|||
|
// MorphCross is the cross morph shape.
|
|||
|
MorphCross = 1
|
|||
|
|
|||
|
// MorphEllipse is the ellipse morph shape.
|
|||
|
MorphEllipse = 2
|
|||
|
)
|
|||
|
|
|||
|
// GetStructuringElement returns a structuring element of the specified size
|
|||
|
// and shape for morphological operations.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac342a1bb6eabf6f55c803b09268e36dc
|
|||
|
//
|
|||
|
func GetStructuringElement(shape MorphShape, ksize image.Point) Mat {
|
|||
|
sz := C.struct_Size{
|
|||
|
width: C.int(ksize.X),
|
|||
|
height: C.int(ksize.Y),
|
|||
|
}
|
|||
|
|
|||
|
return newMat(C.GetStructuringElement(C.int(shape), sz))
|
|||
|
}
|
|||
|
|
|||
|
// MorphType type of morphological operation.
|
|||
|
type MorphType int
|
|||
|
|
|||
|
const (
|
|||
|
// MorphErode operation
|
|||
|
MorphErode MorphType = 0
|
|||
|
|
|||
|
// MorphDilate operation
|
|||
|
MorphDilate = 1
|
|||
|
|
|||
|
// MorphOpen operation
|
|||
|
MorphOpen = 2
|
|||
|
|
|||
|
// MorphClose operation
|
|||
|
MorphClose = 3
|
|||
|
|
|||
|
// MorphGradient operation
|
|||
|
MorphGradient = 4
|
|||
|
|
|||
|
// MorphTophat operation
|
|||
|
MorphTophat = 5
|
|||
|
|
|||
|
// MorphBlackhat operation
|
|||
|
MorphBlackhat = 6
|
|||
|
|
|||
|
// MorphHitmiss operation
|
|||
|
MorphHitmiss = 7
|
|||
|
)
|
|||
|
|
|||
|
// BorderType type of border.
|
|||
|
type BorderType int
|
|||
|
|
|||
|
const (
|
|||
|
// BorderConstant border type
|
|||
|
BorderConstant BorderType = 0
|
|||
|
|
|||
|
// BorderReplicate border type
|
|||
|
BorderReplicate = 1
|
|||
|
|
|||
|
// BorderReflect border type
|
|||
|
BorderReflect = 2
|
|||
|
|
|||
|
// BorderWrap border type
|
|||
|
BorderWrap = 3
|
|||
|
|
|||
|
// BorderReflect101 border type
|
|||
|
BorderReflect101 = 4
|
|||
|
|
|||
|
// BorderTransparent border type
|
|||
|
BorderTransparent = 5
|
|||
|
|
|||
|
// BorderDefault border type
|
|||
|
BorderDefault = BorderReflect101
|
|||
|
|
|||
|
// BorderIsolated border type
|
|||
|
BorderIsolated = 16
|
|||
|
)
|
|||
|
|
|||
|
// GaussianBlur blurs an image Mat using a Gaussian filter.
|
|||
|
// The function convolves the src Mat image into the dst Mat using
|
|||
|
// the specified Gaussian kernel params.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
|
|||
|
//
|
|||
|
func GaussianBlur(src Mat, dst *Mat, ksize image.Point, sigmaX float64,
|
|||
|
sigmaY float64, borderType BorderType) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(ksize.X),
|
|||
|
height: C.int(ksize.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.GaussianBlur(src.p, dst.p, pSize, C.double(sigmaX), C.double(sigmaY), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gacea54f142e81b6758cb6f375ce782c8d
|
|||
|
//
|
|||
|
func Sobel(src Mat, dst *Mat, ddepth, dx, dy, ksize int, scale, delta float64, borderType BorderType) {
|
|||
|
C.Sobel(src.p, dst.p, C.int(ddepth), C.int(dx), C.int(dy), C.int(ksize), C.double(scale), C.double(delta), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga405d03b20c782b65a4daf54d233239a2
|
|||
|
//
|
|||
|
func SpatialGradient(src Mat, dx, dy *Mat, ksize int, borderType BorderType) {
|
|||
|
C.SpatialGradient(src.p, dx.p, dy.p, C.int(ksize), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// Laplacian calculates the Laplacian of an image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad78703e4c8fe703d479c1860d76429e6
|
|||
|
//
|
|||
|
func Laplacian(src Mat, dst *Mat, dDepth int, size int, scale float64,
|
|||
|
delta float64, borderType BorderType) {
|
|||
|
C.Laplacian(src.p, dst.p, C.int(dDepth), C.int(size), C.double(scale), C.double(delta), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// Scharr calculates the first x- or y- image derivative using Scharr operator.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9
|
|||
|
//
|
|||
|
func Scharr(src Mat, dst *Mat, dDepth int, dx int, dy int, scale float64,
|
|||
|
delta float64, borderType BorderType) {
|
|||
|
C.Scharr(src.p, dst.p, C.int(dDepth), C.int(dx), C.int(dy), C.double(scale), C.double(delta), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// MedianBlur blurs an image using the median filter.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9
|
|||
|
//
|
|||
|
func MedianBlur(src Mat, dst *Mat, ksize int) {
|
|||
|
C.MedianBlur(src.p, dst.p, C.int(ksize))
|
|||
|
}
|
|||
|
|
|||
|
// Canny finds edges in an image using the Canny algorithm.
|
|||
|
// The function finds edges in the input image image and marks
|
|||
|
// them in the output map edges using the Canny algorithm.
|
|||
|
// The smallest value between threshold1 and threshold2 is used
|
|||
|
// for edge linking. The largest value is used to
|
|||
|
// find initial segments of strong edges.
|
|||
|
// See http://en.wikipedia.org/wiki/Canny_edge_detector
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
|
|||
|
//
|
|||
|
func Canny(src Mat, edges *Mat, t1 float32, t2 float32) {
|
|||
|
C.Canny(src.p, edges.p, C.double(t1), C.double(t2))
|
|||
|
}
|
|||
|
|
|||
|
// CornerSubPix Refines the corner locations. The function iterates to find
|
|||
|
// the sub-pixel accurate location of corners or radial saddle points.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e
|
|||
|
//
|
|||
|
func CornerSubPix(img Mat, corners *Mat, winSize image.Point, zeroZone image.Point, criteria TermCriteria) {
|
|||
|
winSz := C.struct_Size{
|
|||
|
width: C.int(winSize.X),
|
|||
|
height: C.int(winSize.Y),
|
|||
|
}
|
|||
|
|
|||
|
zeroSz := C.struct_Size{
|
|||
|
width: C.int(zeroZone.X),
|
|||
|
height: C.int(zeroZone.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.CornerSubPix(img.p, corners.p, winSz, zeroSz, criteria.p)
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
// GoodFeaturesToTrack determines strong corners on an image. The function
|
|||
|
// finds the most prominent corners in the image or in the specified image region.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga1d6bb77486c8f92d79c8793ad995d541
|
|||
|
//
|
|||
|
func GoodFeaturesToTrack(img Mat, corners *Mat, maxCorners int, quality float64, minDist float64) {
|
|||
|
C.GoodFeaturesToTrack(img.p, corners.p, C.int(maxCorners), C.double(quality), C.double(minDist))
|
|||
|
}
|
|||
|
|
|||
|
// GrabCutMode is the flag for GrabCut algorithm.
|
|||
|
type GrabCutMode int
|
|||
|
|
|||
|
const (
|
|||
|
// GCInitWithRect makes the function initialize the state and the mask using the provided rectangle.
|
|||
|
// After that it runs the itercount iterations of the algorithm.
|
|||
|
GCInitWithRect GrabCutMode = 0
|
|||
|
// GCInitWithMask makes the function initialize the state using the provided mask.
|
|||
|
// GCInitWithMask and GCInitWithRect can be combined.
|
|||
|
// Then all the pixels outside of the ROI are automatically initialized with GC_BGD.
|
|||
|
GCInitWithMask = 1
|
|||
|
// GCEval means that the algorithm should just resume.
|
|||
|
GCEval = 2
|
|||
|
// GCEvalFreezeModel means that the algorithm should just run a single iteration of the GrabCut algorithm
|
|||
|
// with the fixed model
|
|||
|
GCEvalFreezeModel = 3
|
|||
|
)
|
|||
|
|
|||
|
// Grabcut runs the GrabCut algorithm.
|
|||
|
// The function implements the GrabCut image segmentation algorithm.
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga909c1dda50efcbeaa3ce126be862b37f
|
|||
|
//
|
|||
|
func GrabCut(img Mat, mask *Mat, r image.Rectangle, bgdModel *Mat, fgdModel *Mat, iterCount int, mode GrabCutMode) {
|
|||
|
cRect := C.struct_Rect{
|
|||
|
x: C.int(r.Min.X),
|
|||
|
y: C.int(r.Min.Y),
|
|||
|
width: C.int(r.Size().X),
|
|||
|
height: C.int(r.Size().Y),
|
|||
|
}
|
|||
|
|
|||
|
C.GrabCut(img.p, mask.p, cRect, bgdModel.p, fgdModel.p, C.int(iterCount), C.int(mode))
|
|||
|
}
|
|||
|
|
|||
|
// HoughMode is the type for Hough transform variants.
|
|||
|
type HoughMode int
|
|||
|
|
|||
|
const (
|
|||
|
// HoughStandard is the classical or standard Hough transform.
|
|||
|
HoughStandard HoughMode = 0
|
|||
|
// HoughProbabilistic is the probabilistic Hough transform (more efficient
|
|||
|
// in case if the picture contains a few long linear segments).
|
|||
|
HoughProbabilistic = 1
|
|||
|
// HoughMultiScale is the multi-scale variant of the classical Hough
|
|||
|
// transform.
|
|||
|
HoughMultiScale = 2
|
|||
|
// HoughGradient is basically 21HT, described in: HK Yuen, John Princen,
|
|||
|
// John Illingworth, and Josef Kittler. Comparative study of hough
|
|||
|
// transform methods for circle finding. Image and Vision Computing,
|
|||
|
// 8(1):71–77, 1990.
|
|||
|
HoughGradient = 3
|
|||
|
)
|
|||
|
|
|||
|
// HoughCircles finds circles in a grayscale image using the Hough transform.
|
|||
|
// The only "method" currently supported is HoughGradient. If you want to pass
|
|||
|
// more parameters, please see `HoughCirclesWithParams`.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d
|
|||
|
//
|
|||
|
func HoughCircles(src Mat, circles *Mat, method HoughMode, dp, minDist float64) {
|
|||
|
C.HoughCircles(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist))
|
|||
|
}
|
|||
|
|
|||
|
// HoughCirclesWithParams finds circles in a grayscale image using the Hough
|
|||
|
// transform. The only "method" currently supported is HoughGradient.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d
|
|||
|
//
|
|||
|
func HoughCirclesWithParams(src Mat, circles *Mat, method HoughMode, dp, minDist, param1, param2 float64, minRadius, maxRadius int) {
|
|||
|
C.HoughCirclesWithParams(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist), C.double(param1), C.double(param2), C.int(minRadius), C.int(maxRadius))
|
|||
|
}
|
|||
|
|
|||
|
// HoughLines implements the standard or standard multi-scale Hough transform
|
|||
|
// algorithm for line detection. For a good explanation of Hough transform, see:
|
|||
|
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga46b4e588934f6c8dfd509cc6e0e4545a
|
|||
|
//
|
|||
|
func HoughLines(src Mat, lines *Mat, rho float32, theta float32, threshold int) {
|
|||
|
C.HoughLines(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold))
|
|||
|
}
|
|||
|
|
|||
|
// HoughLinesP implements the probabilistic Hough transform
|
|||
|
// algorithm for line detection. For a good explanation of Hough transform, see:
|
|||
|
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga8618180a5948286384e3b7ca02f6feeb
|
|||
|
//
|
|||
|
func HoughLinesP(src Mat, lines *Mat, rho float32, theta float32, threshold int) {
|
|||
|
C.HoughLinesP(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold))
|
|||
|
}
|
|||
|
func HoughLinesPWithParams(src Mat, lines *Mat, rho float32, theta float32, threshold int, minLineLength float32, maxLineGap float32) {
|
|||
|
C.HoughLinesPWithParams(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold), C.double(minLineLength), C.double(maxLineGap))
|
|||
|
}
|
|||
|
|
|||
|
// HoughLinesPointSet implements the Hough transform algorithm for line
|
|||
|
// detection on a set of points. For a good explanation of Hough transform, see:
|
|||
|
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga2858ef61b4e47d1919facac2152a160e
|
|||
|
//
|
|||
|
func HoughLinesPointSet(points Mat, lines *Mat, linesMax int, threshold int,
|
|||
|
minRho float32, maxRho float32, rhoStep float32,
|
|||
|
minTheta float32, maxTheta float32, thetaStep float32) {
|
|||
|
C.HoughLinesPointSet(points.p, lines.p, C.int(linesMax), C.int(threshold),
|
|||
|
C.double(minRho), C.double(maxRho), C.double(rhoStep),
|
|||
|
C.double(minTheta), C.double(maxTheta), C.double(thetaStep))
|
|||
|
}
|
|||
|
|
|||
|
// Integral calculates one or more integral images for the source image.
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
|
|||
|
//
|
|||
|
func Integral(src Mat, sum *Mat, sqsum *Mat, tilted *Mat) {
|
|||
|
C.Integral(src.p, sum.p, sqsum.p, tilted.p)
|
|||
|
}
|
|||
|
|
|||
|
// ThresholdType type of threshold operation.
|
|||
|
type ThresholdType int
|
|||
|
|
|||
|
const (
|
|||
|
// ThresholdBinary threshold type
|
|||
|
ThresholdBinary ThresholdType = 0
|
|||
|
|
|||
|
// ThresholdBinaryInv threshold type
|
|||
|
ThresholdBinaryInv = 1
|
|||
|
|
|||
|
// ThresholdTrunc threshold type
|
|||
|
ThresholdTrunc = 2
|
|||
|
|
|||
|
// ThresholdToZero threshold type
|
|||
|
ThresholdToZero = 3
|
|||
|
|
|||
|
// ThresholdToZeroInv threshold type
|
|||
|
ThresholdToZeroInv = 4
|
|||
|
|
|||
|
// ThresholdMask threshold type
|
|||
|
ThresholdMask = 7
|
|||
|
|
|||
|
// ThresholdOtsu threshold type
|
|||
|
ThresholdOtsu = 8
|
|||
|
|
|||
|
// ThresholdTriangle threshold type
|
|||
|
ThresholdTriangle = 16
|
|||
|
)
|
|||
|
|
|||
|
// Threshold applies a fixed-level threshold to each array element.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
|
|||
|
//
|
|||
|
func Threshold(src Mat, dst *Mat, thresh float32, maxvalue float32, typ ThresholdType) {
|
|||
|
C.Threshold(src.p, dst.p, C.double(thresh), C.double(maxvalue), C.int(typ))
|
|||
|
}
|
|||
|
|
|||
|
// AdaptiveThresholdType type of adaptive threshold operation.
|
|||
|
type AdaptiveThresholdType int
|
|||
|
|
|||
|
const (
|
|||
|
// AdaptiveThresholdMean threshold type
|
|||
|
AdaptiveThresholdMean AdaptiveThresholdType = 0
|
|||
|
|
|||
|
// AdaptiveThresholdGaussian threshold type
|
|||
|
AdaptiveThresholdGaussian = 1
|
|||
|
)
|
|||
|
|
|||
|
// AdaptiveThreshold applies a fixed-level threshold to each array element.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga72b913f352e4a1b1b397736707afcde3
|
|||
|
//
|
|||
|
func AdaptiveThreshold(src Mat, dst *Mat, maxValue float32, adaptiveTyp AdaptiveThresholdType, typ ThresholdType, blockSize int, c float32) {
|
|||
|
C.AdaptiveThreshold(src.p, dst.p, C.double(maxValue), C.int(adaptiveTyp), C.int(typ), C.int(blockSize), C.double(c))
|
|||
|
}
|
|||
|
|
|||
|
// ArrowedLine draws a arrow segment pointing from the first point
|
|||
|
// to the second one.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga0a165a3ca093fd488ac709fdf10c05b2
|
|||
|
//
|
|||
|
func ArrowedLine(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) {
|
|||
|
sp1 := C.struct_Point{
|
|||
|
x: C.int(pt1.X),
|
|||
|
y: C.int(pt1.Y),
|
|||
|
}
|
|||
|
|
|||
|
sp2 := C.struct_Point{
|
|||
|
x: C.int(pt2.X),
|
|||
|
y: C.int(pt2.Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.ArrowedLine(img.p, sp1, sp2, sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// Circle draws a circle.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf10604b069374903dbd0f0488cb43670
|
|||
|
//
|
|||
|
func Circle(img *Mat, center image.Point, radius int, c color.RGBA, thickness int) {
|
|||
|
pc := C.struct_Point{
|
|||
|
x: C.int(center.X),
|
|||
|
y: C.int(center.Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.Circle(img.p, pc, C.int(radius), sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga28b2267d35786f5f890ca167236cbc69
|
|||
|
//
|
|||
|
func Ellipse(img *Mat, center, axes image.Point, angle, startAngle, endAngle float64, c color.RGBA, thickness int) {
|
|||
|
pc := C.struct_Point{
|
|||
|
x: C.int(center.X),
|
|||
|
y: C.int(center.Y),
|
|||
|
}
|
|||
|
pa := C.struct_Point{
|
|||
|
x: C.int(axes.X),
|
|||
|
y: C.int(axes.Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.Ellipse(img.p, pc, pa, C.double(angle), C.double(startAngle), C.double(endAngle), sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// Line draws a line segment connecting two points.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga7078a9fae8c7e7d13d24dac2520ae4a2
|
|||
|
//
|
|||
|
func Line(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) {
|
|||
|
sp1 := C.struct_Point{
|
|||
|
x: C.int(pt1.X),
|
|||
|
y: C.int(pt1.Y),
|
|||
|
}
|
|||
|
|
|||
|
sp2 := C.struct_Point{
|
|||
|
x: C.int(pt2.X),
|
|||
|
y: C.int(pt2.Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.Line(img.p, sp1, sp2, sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// Rectangle draws a simple, thick, or filled up-right rectangle.
|
|||
|
// It renders a rectangle with the desired characteristics to the target Mat image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga346ac30b5c74e9b5137576c9ee9e0e8c
|
|||
|
//
|
|||
|
func Rectangle(img *Mat, r image.Rectangle, c color.RGBA, thickness int) {
|
|||
|
cRect := C.struct_Rect{
|
|||
|
x: C.int(r.Min.X),
|
|||
|
y: C.int(r.Min.Y),
|
|||
|
width: C.int(r.Size().X),
|
|||
|
height: C.int(r.Size().Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.Rectangle(img.p, cRect, sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// FillPoly fills the area bounded by one or more polygons.
|
|||
|
//
|
|||
|
// For more information, see:
|
|||
|
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf30888828337aa4c6b56782b5dfbd4b7
|
|||
|
func FillPoly(img *Mat, pts [][]image.Point, c color.RGBA) {
|
|||
|
points := make([]C.struct_Points, len(pts))
|
|||
|
|
|||
|
for i, pt := range pts {
|
|||
|
func() {
|
|||
|
p := (*C.struct_Point)(C.malloc(C.size_t(C.sizeof_struct_Point * len(pt))))
|
|||
|
defer C.free(unsafe.Pointer(p))
|
|||
|
|
|||
|
pa := getPoints(p, len(pt))
|
|||
|
|
|||
|
for j, point := range pt {
|
|||
|
pa[j] = C.struct_Point{
|
|||
|
x: C.int(point.X),
|
|||
|
y: C.int(point.Y),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
points[i] = C.struct_Points{
|
|||
|
points: (*C.Point)(p),
|
|||
|
length: C.int(len(pt)),
|
|||
|
}
|
|||
|
}()
|
|||
|
}
|
|||
|
|
|||
|
cPoints := C.struct_Contours{
|
|||
|
contours: (*C.struct_Points)(&points[0]),
|
|||
|
length: C.int(len(pts)),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.FillPoly(img.p, cPoints, sColor)
|
|||
|
}
|
|||
|
|
|||
|
// HersheyFont are the font libraries included in OpenCV.
|
|||
|
// Only a subset of the available Hershey fonts are supported by OpenCV.
|
|||
|
//
|
|||
|
// For more information, see:
|
|||
|
// http://sources.isc.org/utils/misc/hershey-font.txt
|
|||
|
//
|
|||
|
type HersheyFont int
|
|||
|
|
|||
|
const (
|
|||
|
// FontHersheySimplex is normal size sans-serif font.
|
|||
|
FontHersheySimplex HersheyFont = 0
|
|||
|
// FontHersheyPlain issmall size sans-serif font.
|
|||
|
FontHersheyPlain = 1
|
|||
|
// FontHersheyDuplex normal size sans-serif font
|
|||
|
// (more complex than FontHersheySIMPLEX).
|
|||
|
FontHersheyDuplex = 2
|
|||
|
// FontHersheyComplex i a normal size serif font.
|
|||
|
FontHersheyComplex = 3
|
|||
|
// FontHersheyTriplex is a normal size serif font
|
|||
|
// (more complex than FontHersheyCOMPLEX).
|
|||
|
FontHersheyTriplex = 4
|
|||
|
// FontHersheyComplexSmall is a smaller version of FontHersheyCOMPLEX.
|
|||
|
FontHersheyComplexSmall = 5
|
|||
|
// FontHersheyScriptSimplex is a hand-writing style font.
|
|||
|
FontHersheyScriptSimplex = 6
|
|||
|
// FontHersheyScriptComplex is a more complex variant of FontHersheyScriptSimplex.
|
|||
|
FontHersheyScriptComplex = 7
|
|||
|
// FontItalic is the flag for italic font.
|
|||
|
FontItalic = 16
|
|||
|
)
|
|||
|
|
|||
|
// GetTextSize calculates the width and height of a text string.
|
|||
|
// It returns an image.Point with the size required to draw text using
|
|||
|
// a specific font face, scale, and thickness.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga3d2abfcb995fd2db908c8288199dba82
|
|||
|
//
|
|||
|
func GetTextSize(text string, fontFace HersheyFont, fontScale float64, thickness int) image.Point {
|
|||
|
cText := C.CString(text)
|
|||
|
defer C.free(unsafe.Pointer(cText))
|
|||
|
|
|||
|
sz := C.GetTextSize(cText, C.int(fontFace), C.double(fontScale), C.int(thickness))
|
|||
|
return image.Pt(int(sz.width), int(sz.height))
|
|||
|
}
|
|||
|
|
|||
|
// PutText draws a text string.
|
|||
|
// It renders the specified text string into the img Mat at the location
|
|||
|
// passed in the "org" param, using the desired font face, font scale,
|
|||
|
// color, and line thinkness.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga5126f47f883d730f633d74f07456c576
|
|||
|
//
|
|||
|
func PutText(img *Mat, text string, org image.Point, fontFace HersheyFont, fontScale float64, c color.RGBA, thickness int) {
|
|||
|
cText := C.CString(text)
|
|||
|
defer C.free(unsafe.Pointer(cText))
|
|||
|
|
|||
|
pOrg := C.struct_Point{
|
|||
|
x: C.int(org.X),
|
|||
|
y: C.int(org.Y),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.PutText(img.p, cText, pOrg, C.int(fontFace), C.double(fontScale), sColor, C.int(thickness))
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
// InterpolationFlags are bit flags that control the interpolation algorithm
|
|||
|
// that is used.
|
|||
|
type InterpolationFlags int
|
|||
|
|
|||
|
const (
|
|||
|
// InterpolationNearestNeighbor is nearest neighbor. (fast but low quality)
|
|||
|
InterpolationNearestNeighbor InterpolationFlags = 0
|
|||
|
|
|||
|
// InterpolationLinear is bilinear interpolation.
|
|||
|
InterpolationLinear = 1
|
|||
|
|
|||
|
// InterpolationCubic is bicube interpolation.
|
|||
|
InterpolationCubic = 2
|
|||
|
|
|||
|
// InterpolationArea uses pixel area relation. It is preferred for image
|
|||
|
// decimation as it gives moire-free results.
|
|||
|
InterpolationArea = 3
|
|||
|
|
|||
|
// InterpolationLanczos4 is Lanczos interpolation over 8x8 neighborhood.
|
|||
|
InterpolationLanczos4 = 4
|
|||
|
|
|||
|
// InterpolationDefault is an alias for InterpolationLinear.
|
|||
|
InterpolationDefault = InterpolationLinear
|
|||
|
|
|||
|
// InterpolationMax indicates use maximum interpolation.
|
|||
|
InterpolationMax = 7
|
|||
|
)
|
|||
|
|
|||
|
// Resize resizes an image.
|
|||
|
// It resizes the image src down to or up to the specified size, storing the
|
|||
|
// result in dst. Note that src and dst may be the same image. If you wish to
|
|||
|
// scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise,
|
|||
|
// if you wish to scale to an explicit size, a non-empty sz may be passed with
|
|||
|
// zero for both fx and fy.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
|
|||
|
func Resize(src Mat, dst *Mat, sz image.Point, fx, fy float64, interp InterpolationFlags) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(sz.X),
|
|||
|
height: C.int(sz.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.Resize(src.p, dst.p, pSize, C.double(fx), C.double(fy), C.int(interp))
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
// GetRotationMatrix2D calculates an affine matrix of 2D rotation.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gafbbc470ce83812914a70abfb604f4326
|
|||
|
func GetRotationMatrix2D(center image.Point, angle, scale float64) Mat {
|
|||
|
pc := C.struct_Point{
|
|||
|
x: C.int(center.X),
|
|||
|
y: C.int(center.Y),
|
|||
|
}
|
|||
|
return newMat(C.GetRotationMatrix2D(pc, C.double(angle), C.double(scale)))
|
|||
|
}
|
|||
|
|
|||
|
// WarpAffine applies an affine transformation to an image. For more parameters please check WarpAffineWithParams
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983
|
|||
|
func WarpAffine(src Mat, dst *Mat, m Mat, sz image.Point) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(sz.X),
|
|||
|
height: C.int(sz.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.WarpAffine(src.p, dst.p, m.p, pSize)
|
|||
|
}
|
|||
|
|
|||
|
// WarpAffineWithParams applies an affine transformation to an image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983
|
|||
|
func WarpAffineWithParams(src Mat, dst *Mat, m Mat, sz image.Point, flags InterpolationFlags, borderType BorderType, borderValue color.RGBA) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(sz.X),
|
|||
|
height: C.int(sz.Y),
|
|||
|
}
|
|||
|
bv := C.struct_Scalar{
|
|||
|
val1: C.double(borderValue.B),
|
|||
|
val2: C.double(borderValue.G),
|
|||
|
val3: C.double(borderValue.R),
|
|||
|
val4: C.double(borderValue.A),
|
|||
|
}
|
|||
|
C.WarpAffineWithParams(src.p, dst.p, m.p, pSize, C.int(flags), C.int(borderType), bv)
|
|||
|
}
|
|||
|
|
|||
|
// WarpPerspective applies a perspective transformation to an image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87
|
|||
|
func WarpPerspective(src Mat, dst *Mat, m Mat, sz image.Point) {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(sz.X),
|
|||
|
height: C.int(sz.Y),
|
|||
|
}
|
|||
|
|
|||
|
C.WarpPerspective(src.p, dst.p, m.p, pSize)
|
|||
|
}
|
|||
|
|
|||
|
// Watershed performs a marker-based image segmentation using the watershed algorithm.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga3267243e4d3f95165d55a618c65ac6e1
|
|||
|
func Watershed(image Mat, markers *Mat) {
|
|||
|
C.Watershed(image.p, markers.p)
|
|||
|
}
|
|||
|
|
|||
|
// ColormapTypes are the 12 GNU Octave/MATLAB equivalent colormaps.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html
|
|||
|
type ColormapTypes int
|
|||
|
|
|||
|
// List of the available color maps
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#ga9a805d8262bcbe273f16be9ea2055a65
|
|||
|
const (
|
|||
|
ColormapAutumn ColormapTypes = 0
|
|||
|
ColormapBone = 1
|
|||
|
ColormapJet = 2
|
|||
|
ColormapWinter = 3
|
|||
|
ColormapRainbow = 4
|
|||
|
ColormapOcean = 5
|
|||
|
ColormapSummer = 6
|
|||
|
ColormapSpring = 7
|
|||
|
ColormapCool = 8
|
|||
|
ColormapHsv = 9
|
|||
|
ColormapPink = 10
|
|||
|
ColormapHot = 11
|
|||
|
ColormapParula = 12
|
|||
|
)
|
|||
|
|
|||
|
// ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
|
|||
|
func ApplyColorMap(src Mat, dst *Mat, colormapType ColormapTypes) {
|
|||
|
C.ApplyColorMap(src.p, dst.p, C.int(colormapType))
|
|||
|
}
|
|||
|
|
|||
|
// ApplyCustomColorMap applies a custom defined colormap on a given image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gacb22288ddccc55f9bd9e6d492b409cae
|
|||
|
func ApplyCustomColorMap(src Mat, dst *Mat, customColormap Mat) {
|
|||
|
C.ApplyCustomColorMap(src.p, dst.p, customColormap.p)
|
|||
|
}
|
|||
|
|
|||
|
// GetPerspectiveTransform returns 3x3 perspective transformation for the
|
|||
|
// corresponding 4 point pairs.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8c1ae0e3589a9d77fffc962c49b22043
|
|||
|
func GetPerspectiveTransform(src, dst []image.Point) Mat {
|
|||
|
srcPoints := toCPoints(src)
|
|||
|
dstPoints := toCPoints(dst)
|
|||
|
return newMat(C.GetPerspectiveTransform(srcPoints, dstPoints))
|
|||
|
}
|
|||
|
|
|||
|
// DrawContours draws contours outlines or filled contours.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/3.3.1/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
|
|||
|
func DrawContours(img *Mat, contours [][]image.Point, contourIdx int, c color.RGBA, thickness int) {
|
|||
|
cntrs := make([]C.struct_Points, len(contours))
|
|||
|
|
|||
|
for i, contour := range contours {
|
|||
|
func() {
|
|||
|
p := (*C.struct_Point)(C.malloc(C.size_t(C.sizeof_struct_Point * len(contour))))
|
|||
|
defer C.free(unsafe.Pointer(p))
|
|||
|
|
|||
|
pa := getPoints(p, len(contour))
|
|||
|
|
|||
|
for j, point := range contour {
|
|||
|
pa[j] = C.struct_Point{
|
|||
|
x: C.int(point.X),
|
|||
|
y: C.int(point.Y),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
cntrs[i] = C.struct_Points{
|
|||
|
points: (*C.Point)(p),
|
|||
|
length: C.int(len(contour)),
|
|||
|
}
|
|||
|
}()
|
|||
|
}
|
|||
|
|
|||
|
cContours := C.struct_Contours{
|
|||
|
contours: (*C.struct_Points)(&cntrs[0]),
|
|||
|
length: C.int(len(contours)),
|
|||
|
}
|
|||
|
|
|||
|
sColor := C.struct_Scalar{
|
|||
|
val1: C.double(c.B),
|
|||
|
val2: C.double(c.G),
|
|||
|
val3: C.double(c.R),
|
|||
|
val4: C.double(c.A),
|
|||
|
}
|
|||
|
|
|||
|
C.DrawContours(img.p, cContours, C.int(contourIdx), sColor, C.int(thickness))
|
|||
|
}
|
|||
|
|
|||
|
// Remap applies a generic geometrical transformation to an image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4
|
|||
|
func Remap(src Mat, dst, map1, map2 *Mat, interpolation InterpolationFlags, borderMode BorderType, borderValue color.RGBA) {
|
|||
|
bv := C.struct_Scalar{
|
|||
|
val1: C.double(borderValue.B),
|
|||
|
val2: C.double(borderValue.G),
|
|||
|
val3: C.double(borderValue.R),
|
|||
|
val4: C.double(borderValue.A),
|
|||
|
}
|
|||
|
C.Remap(src.p, dst.p, map1.p, map2.p, C.int(interpolation), C.int(borderMode), bv)
|
|||
|
}
|
|||
|
|
|||
|
// Filter2D applies an arbitrary linear filter to an image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
|
|||
|
func Filter2D(src Mat, dst *Mat, ddepth int, kernel Mat, anchor image.Point, delta float64, borderType BorderType) {
|
|||
|
anchorP := C.struct_Point{
|
|||
|
x: C.int(anchor.X),
|
|||
|
y: C.int(anchor.Y),
|
|||
|
}
|
|||
|
C.Filter2D(src.p, dst.p, C.int(ddepth), kernel.p, anchorP, C.double(delta), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// SepFilter2D applies a separable linear filter to the image.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga910e29ff7d7b105057d1625a4bf6318d
|
|||
|
func SepFilter2D(src Mat, dst *Mat, ddepth int, kernelX, kernelY Mat, anchor image.Point, delta float64, borderType BorderType) {
|
|||
|
anchorP := C.struct_Point{
|
|||
|
x: C.int(anchor.X),
|
|||
|
y: C.int(anchor.Y),
|
|||
|
}
|
|||
|
C.SepFilter2D(src.p, dst.p, C.int(ddepth), kernelX.p, kernelY.p, anchorP, C.double(delta), C.int(borderType))
|
|||
|
}
|
|||
|
|
|||
|
// LogPolar remaps an image to semilog-polar coordinates space.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaec3a0b126a85b5ca2c667b16e0ae022d
|
|||
|
func LogPolar(src Mat, dst *Mat, center image.Point, m float64, flags InterpolationFlags) {
|
|||
|
centerP := C.struct_Point{
|
|||
|
x: C.int(center.X),
|
|||
|
y: C.int(center.Y),
|
|||
|
}
|
|||
|
C.LogPolar(src.p, dst.p, centerP, C.double(m), C.int(flags))
|
|||
|
}
|
|||
|
|
|||
|
// DistanceTypes types for Distance Transform and M-estimatorss
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#gaa2bfbebbc5c320526897996aafa1d8eb
|
|||
|
type DistanceTypes int
|
|||
|
|
|||
|
const (
|
|||
|
DistUser DistanceTypes = 0
|
|||
|
DistL1 = 1
|
|||
|
DistL2 = 2
|
|||
|
DistC = 3
|
|||
|
DistL12 = 4
|
|||
|
DistFair = 5
|
|||
|
DistWelsch = 6
|
|||
|
DistHuber = 7
|
|||
|
)
|
|||
|
|
|||
|
// FitLine fits a line to a 2D or 3D point set.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
|
|||
|
func FitLine(pts []image.Point, line *Mat, distType DistanceTypes, param, reps, aeps float64) {
|
|||
|
cPoints := toCPoints(pts)
|
|||
|
C.FitLine(cPoints, line.p, C.int(distType), C.double(param), C.double(reps), C.double(aeps))
|
|||
|
}
|
|||
|
|
|||
|
// CLAHE is a wrapper around the cv::CLAHE algorithm.
|
|||
|
type CLAHE struct {
|
|||
|
// C.CLAHE
|
|||
|
p unsafe.Pointer
|
|||
|
}
|
|||
|
|
|||
|
// NewCLAHE returns a new CLAHE algorithm
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html
|
|||
|
//
|
|||
|
func NewCLAHE() CLAHE {
|
|||
|
return CLAHE{p: unsafe.Pointer(C.CLAHE_Create())}
|
|||
|
}
|
|||
|
|
|||
|
// NewCLAHEWithParams returns a new CLAHE algorithm
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html
|
|||
|
//
|
|||
|
func NewCLAHEWithParams(clipLimit float64, tileGridSize image.Point) CLAHE {
|
|||
|
pSize := C.struct_Size{
|
|||
|
width: C.int(tileGridSize.X),
|
|||
|
height: C.int(tileGridSize.Y),
|
|||
|
}
|
|||
|
return CLAHE{p: unsafe.Pointer(C.CLAHE_CreateWithParams(C.double(clipLimit), pSize))}
|
|||
|
}
|
|||
|
|
|||
|
// Close CLAHE.
|
|||
|
func (c *CLAHE) Close() error {
|
|||
|
C.CLAHE_Close((C.CLAHE)(c.p))
|
|||
|
c.p = nil
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// Apply CLAHE.
|
|||
|
//
|
|||
|
// For further details, please see:
|
|||
|
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html#a4e92e0e427de21be8d1fae8dcd862c5e
|
|||
|
//
|
|||
|
func (c *CLAHE) Apply(src Mat, dst *Mat) {
|
|||
|
C.CLAHE_Apply((C.CLAHE)(c.p), src.p, dst.p)
|
|||
|
}
|