package gocv /* #include #include "imgproc.h" */ import "C" import ( "image" "image/color" "reflect" "unsafe" ) func getPoints(pts *C.Point, l int) []C.Point { h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(pts)), Len: l, Cap: l, } return *(*[]C.Point)(unsafe.Pointer(h)) } // ArcLength calculates a contour perimeter or a curve length. // // For further details, please see: // // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga8d26483c636be6b35c3ec6335798a47c // func ArcLength(curve []image.Point, isClosed bool) float64 { cPoints := toCPoints(curve) arcLength := C.ArcLength(cPoints, C.bool(isClosed)) return float64(arcLength) } // ApproxPolyDP approximates a polygonal curve(s) with the specified precision. // // For further details, please see: // // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga0012a5fdaea70b8a9970165d98722b4c // func ApproxPolyDP(curve []image.Point, epsilon float64, closed bool) (approxCurve []image.Point) { cCurve := toCPoints(curve) cApproxCurve := C.ApproxPolyDP(cCurve, C.double(epsilon), C.bool(closed)) defer C.Points_Close(cApproxCurve) cApproxCurvePoints := getPoints(cApproxCurve.points, int(cApproxCurve.length)) approxCurve = make([]image.Point, cApproxCurve.length) for i, cPoint := range cApproxCurvePoints { approxCurve[i] = image.Pt(int(cPoint.x), int(cPoint.y)) } return approxCurve } // ConvexHull finds the convex hull of a point set. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga014b28e56cb8854c0de4a211cb2be656 // func ConvexHull(points []image.Point, hull *Mat, clockwise bool, returnPoints bool) { cPoints := toCPoints(points) C.ConvexHull(cPoints, hull.p, C.bool(clockwise), C.bool(returnPoints)) } // ConvexityDefects finds the convexity defects of a contour. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gada4437098113fd8683c932e0567f47ba // func ConvexityDefects(contour []image.Point, hull Mat, result *Mat) { cPoints := toCPoints(contour) C.ConvexityDefects(cPoints, hull.p, result.p) } // CvtColor converts an image from one color space to another. // It converts the src Mat image to the dst Mat using the // code param containing the desired ColorConversionCode color space. // // For further details, please see: // http://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga4e0972be5de079fed4e3a10e24ef5ef0 // func CvtColor(src Mat, dst *Mat, code ColorConversionCode) { C.CvtColor(src.p, dst.p, C.int(code)) } // EqualizeHist normalizes the brightness and increases the contrast of the image. // // For further details, please see: // https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga7e54091f0c937d49bf84152a16f76d6e func EqualizeHist(src Mat, dst *Mat) { C.EqualizeHist(src.p, dst.p) } // CalcHist Calculates a histogram of a set of images // // For futher details, please see: // https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga6ca1876785483836f72a77ced8ea759a func CalcHist(src []Mat, channels []int, mask Mat, hist *Mat, size []int, ranges []float64, acc bool) { cMatArray := make([]C.Mat, len(src)) for i, r := range src { cMatArray[i] = r.p } cMats := C.struct_Mats{ mats: (*C.Mat)(&cMatArray[0]), length: C.int(len(src)), } chansInts := []C.int{} for _, v := range channels { chansInts = append(chansInts, C.int(v)) } chansVector := C.struct_IntVector{} chansVector.val = (*C.int)(&chansInts[0]) chansVector.length = (C.int)(len(chansInts)) sizeInts := []C.int{} for _, v := range size { sizeInts = append(sizeInts, C.int(v)) } sizeVector := C.struct_IntVector{} sizeVector.val = (*C.int)(&sizeInts[0]) sizeVector.length = (C.int)(len(sizeInts)) rangeFloats := []C.float{} for _, v := range ranges { rangeFloats = append(rangeFloats, C.float(v)) } rangeVector := C.struct_FloatVector{} rangeVector.val = (*C.float)(&rangeFloats[0]) rangeVector.length = (C.int)(len(rangeFloats)) C.CalcHist(cMats, chansVector, mask.p, hist.p, sizeVector, rangeVector, C.bool(acc)) } // CalcBackProject calculates the back projection of a histogram. // // For futher details, please see: // https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga3a0af640716b456c3d14af8aee12e3ca func CalcBackProject(src []Mat, channels []int, hist Mat, backProject *Mat, ranges []float64, uniform bool) { cMatArray := make([]C.Mat, len(src)) for i, r := range src { cMatArray[i] = r.p } cMats := C.struct_Mats{ mats: (*C.Mat)(&cMatArray[0]), length: C.int(len(src)), } chansInts := []C.int{} for _, v := range channels { chansInts = append(chansInts, C.int(v)) } chansVector := C.struct_IntVector{} chansVector.val = (*C.int)(&chansInts[0]) chansVector.length = (C.int)(len(chansInts)) rangeFloats := []C.float{} for _, v := range ranges { rangeFloats = append(rangeFloats, C.float(v)) } rangeVector := C.struct_FloatVector{} rangeVector.val = (*C.float)(&rangeFloats[0]) rangeVector.length = (C.int)(len(rangeFloats)) C.CalcBackProject(cMats, chansVector, hist.p, backProject.p, rangeVector, C.bool(uniform)) } // HistCompMethod is the method for Histogram comparison // For more information, see https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386 type HistCompMethod int const ( // HistCmpCorrel calculates the Correlation HistCmpCorrel HistCompMethod = 0 // HistCmpChiSqr calculates the Chi-Square HistCmpChiSqr = 1 // HistCmpIntersect calculates the Intersection HistCmpIntersect = 2 // HistCmpBhattacharya applies the HistCmpBhattacharya by calculating the Bhattacharya distance. HistCmpBhattacharya = 3 // HistCmpHellinger applies the HistCmpBhattacharya comparison. It is a synonym to HistCmpBhattacharya. HistCmpHellinger = HistCmpBhattacharya // HistCmpChiSqrAlt applies the Alternative Chi-Square (regularly used for texture comparsion). HistCmpChiSqrAlt = 4 // HistCmpKlDiv applies the Kullback-Liebler divergence comparison. HistCmpKlDiv = 5 ) // CompareHist Compares two histograms. // // For further details, please see: // https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd func CompareHist(hist1 Mat, hist2 Mat, method HistCompMethod) float32 { return float32(C.CompareHist(hist1.p, hist2.p, C.int(method))) } // BilateralFilter applies a bilateral filter to an image. // // Bilateral filtering is described here: // http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html // // BilateralFilter can reduce unwanted noise very well while keeping edges // fairly sharp. However, it is very slow compared to most filters. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed // func BilateralFilter(src Mat, dst *Mat, diameter int, sigmaColor float64, sigmaSpace float64) { C.BilateralFilter(src.p, dst.p, C.int(diameter), C.double(sigmaColor), C.double(sigmaSpace)) } // Blur blurs an image Mat using a normalized box filter. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37 // func Blur(src Mat, dst *Mat, ksize image.Point) { pSize := C.struct_Size{ width: C.int(ksize.X), height: C.int(ksize.Y), } C.Blur(src.p, dst.p, pSize) } // BoxFilter blurs an image using the box filter. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3 // func BoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) { pSize := C.struct_Size{ height: C.int(ksize.X), width: C.int(ksize.Y), } C.BoxFilter(src.p, dst.p, C.int(depth), pSize) } // SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga045028184a9ef65d7d2579e5c4bff6c0 // func SqBoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) { pSize := C.struct_Size{ height: C.int(ksize.X), width: C.int(ksize.Y), } C.SqBoxFilter(src.p, dst.p, C.int(depth), pSize) } // Dilate dilates an image by using a specific structuring element. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga4ff0f3318642c4f469d0e11f242f3b6c // func Dilate(src Mat, dst *Mat, kernel Mat) { C.Dilate(src.p, dst.p, kernel.p) } // DistanceTransformLabelTypes are the types of the DistanceTransform algorithm flag type DistanceTransformLabelTypes int const ( // DistanceLabelCComp assigns the same label to each connected component of zeros in the source image // (as well as all the non-zero pixels closest to the connected component). DistanceLabelCComp DistanceTransformLabelTypes = 0 // DistanceLabelPixel assigns its own label to each zero pixel (and all the non-zero pixels closest to it). DistanceLabelPixel ) // DistanceTransformMasks are the marsk sizes for distance transform type DistanceTransformMasks int const ( // DistanceMask3 is a mask of size 3 DistanceMask3 DistanceTransformMasks = 0 // DistanceMask5 is a mask of size 3 DistanceMask5 // DistanceMaskPrecise is not currently supported DistanceMaskPrecise ) // DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image. // // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga8a0b7fdfcb7a13dde018988ba3a43042 // func DistanceTransform(src Mat, dst *Mat, labels *Mat, distType DistanceTypes, maskSize DistanceTransformMasks, labelType DistanceTransformLabelTypes) { C.DistanceTransform(src.p, dst.p, labels.p, C.int(distType), C.int(maskSize), C.int(labelType)) } // Erode erodes an image by using a specific structuring element. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaeb1e0c1033e3f6b891a25d0511362aeb // func Erode(src Mat, dst *Mat, kernel Mat) { C.Erode(src.p, dst.p, kernel.p) } // RetrievalMode is the mode of the contour retrieval algorithm. type RetrievalMode int const ( // RetrievalExternal retrieves only the extreme outer contours. // It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for all the contours. RetrievalExternal RetrievalMode = 0 // RetrievalList retrieves all of the contours without establishing // any hierarchical relationships. RetrievalList = 1 // RetrievalCComp retrieves all of the contours and organizes them into // a two-level hierarchy. At the top level, there are external boundaries // of the components. At the second level, there are boundaries of the holes. // If there is another contour inside a hole of a connected component, it // is still put at the top level. RetrievalCComp = 2 // RetrievalTree retrieves all of the contours and reconstructs a full // hierarchy of nested contours. RetrievalTree = 3 // RetrievalFloodfill lacks a description in the original header. RetrievalFloodfill = 4 ) // ContourApproximationMode is the mode of the contour approximation algorithm. type ContourApproximationMode int const ( // ChainApproxNone stores absolutely all the contour points. That is, // any 2 subsequent points (x1,y1) and (x2,y2) of the contour will be // either horizontal, vertical or diagonal neighbors, that is, // max(abs(x1-x2),abs(y2-y1))==1. ChainApproxNone ContourApproximationMode = 1 // ChainApproxSimple compresses horizontal, vertical, and diagonal segments // and leaves only their end points. // For example, an up-right rectangular contour is encoded with 4 points. ChainApproxSimple = 2 // ChainApproxTC89L1 applies one of the flavors of the Teh-Chin chain // approximation algorithms. ChainApproxTC89L1 = 3 // ChainApproxTC89KCOS applies one of the flavors of the Teh-Chin chain // approximation algorithms. ChainApproxTC89KCOS = 4 ) // BoundingRect calculates the up-right bounding rectangle of a point set. // // For further details, please see: // https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gacb413ddce8e48ff3ca61ed7cf626a366 // func BoundingRect(contour []image.Point) image.Rectangle { cContour := toCPoints(contour) r := C.BoundingRect(cContour) rect := image.Rect(int(r.x), int(r.y), int(r.x+r.width), int(r.y+r.height)) return rect } // BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. // // For further Details, please see: // https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gaf78d467e024b4d7936cf9397185d2f5c // func BoxPoints(rect RotatedRect, pts *Mat) { rPoints := toCPoints(rect.Contour) rRect := C.struct_Rect{ x: C.int(rect.BoundingRect.Min.X), y: C.int(rect.BoundingRect.Min.Y), width: C.int(rect.BoundingRect.Max.X - rect.BoundingRect.Min.X), height: C.int(rect.BoundingRect.Max.Y - rect.BoundingRect.Min.Y), } rCenter := C.struct_Point{ x: C.int(rect.Center.X), y: C.int(rect.Center.Y), } rSize := C.struct_Size{ width: C.int(rect.Width), height: C.int(rect.Height), } r := C.struct_RotatedRect{ pts: rPoints, boundingRect: rRect, center: rCenter, size: rSize, angle: C.double(rect.Angle), } C.BoxPoints(r, pts.p) } // ContourArea calculates a contour area. // // For further details, please see: // https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga2c759ed9f497d4a618048a2f56dc97f1 // func ContourArea(contour []image.Point) float64 { cContour := toCPoints(contour) result := C.ContourArea(cContour) return float64(result) } type RotatedRect struct { Contour []image.Point BoundingRect image.Rectangle Center image.Point Width int Height int Angle float64 } // MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set. // // For further details, please see: // https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9 // func MinAreaRect(points []image.Point) RotatedRect { cPoints := toCPoints(points) result := C.MinAreaRect(cPoints) defer C.Points_Close(result.pts) pArray := result.pts.points pLength := int(result.pts.length) pHdr := reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(pArray)), Len: pLength, Cap: pLength, } sPoints := *(*[]C.Point)(unsafe.Pointer(&pHdr)) points4 := make([]image.Point, pLength) for j, pt := range sPoints { points4[j] = image.Pt(int(pt.x), int(pt.y)) } return RotatedRect{ Contour: points4, BoundingRect: image.Rect(int(result.boundingRect.x), int(result.boundingRect.y), int(result.boundingRect.x)+int(result.boundingRect.width), int(result.boundingRect.y)+int(result.boundingRect.height)), Center: image.Pt(int(result.center.x), int(result.center.y)), Width: int(result.size.width), Height: int(result.size.height), Angle: float64(result.angle), } } // MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set. // // For further details, please see: // https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1 func MinEnclosingCircle(points []image.Point) (x, y, radius float32) { cPoints := toCPoints(points) cCenterPoint := C.struct_Point2f{} var cRadius C.float C.MinEnclosingCircle(cPoints, &cCenterPoint, &cRadius) x, y = float32(cCenterPoint.x), float32(cCenterPoint.y) radius = float32(cRadius) return x, y, radius } // FindContours finds contours in a binary image. // // For further details, please see: // https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a // func FindContours(src Mat, mode RetrievalMode, method ContourApproximationMode) [][]image.Point { ret := C.FindContours(src.p, C.int(mode), C.int(method)) defer C.Contours_Close(ret) cArray := ret.contours cLength := int(ret.length) cHdr := reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(cArray)), Len: cLength, Cap: cLength, } sContours := *(*[]C.Points)(unsafe.Pointer(&cHdr)) contours := make([][]image.Point, cLength) for i, pts := range sContours { pArray := pts.points pLength := int(pts.length) pHdr := reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(pArray)), Len: pLength, Cap: pLength, } sPoints := *(*[]C.Point)(unsafe.Pointer(&pHdr)) points := make([]image.Point, pLength) for j, pt := range sPoints { points[j] = image.Pt(int(pt.x), int(pt.y)) } contours[i] = points } return contours } //ConnectedComponentsAlgorithmType specifies the type for ConnectedComponents type ConnectedComponentsAlgorithmType int const ( // SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. CCL_WU ConnectedComponentsAlgorithmType = 0 // BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. CCL_DEFAULT = 1 // BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity CCL_GRANA = 2 ) // ConnectedComponents computes the connected components labeled image of boolean image. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5 // func ConnectedComponents(src Mat, labels *Mat) int { return int(C.ConnectedComponents(src.p, labels.p, C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT))) } // ConnectedComponents computes the connected components labeled image of boolean image. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5 // func ConnectedComponentsWithParams(src Mat, labels *Mat, conn int, ltype MatType, ccltype ConnectedComponentsAlgorithmType) int { return int(C.ConnectedComponents(src.p, labels.p, C.int(conn), C.int(ltype), C.int(ccltype))) } // ConnectedComponentsTypes are the connected components algorithm output formats type ConnectedComponentsTypes int const ( //The leftmost (x) coordinate which is the inclusive start of the bounding box in the horizontal direction. CC_STAT_LEFT = 0 //The topmost (y) coordinate which is the inclusive start of the bounding box in the vertical direction. CC_STAT_TOP = 1 // The horizontal size of the bounding box. CC_STAT_WIDTH = 2 // The vertical size of the bounding box. CC_STAT_HEIGHT = 3 // The total area (in pixels) of the connected component. CC_STAT_AREA = 4 CC_STAT_MAX = 5 ) // ConnectedComponentsWithStats computes the connected components labeled image of boolean // image and also produces a statistics output for each label. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f // func ConnectedComponentsWithStats(src Mat, labels *Mat, stats *Mat, centroids *Mat) int { return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p, C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT))) } // ConnectedComponentsWithStats computes the connected components labeled image of boolean // image and also produces a statistics output for each label. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f // func ConnectedComponentsWithStatsWithParams(src Mat, labels *Mat, stats *Mat, centroids *Mat, conn int, ltype MatType, ccltype ConnectedComponentsAlgorithmType) int { return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p, C.int(conn), C.int(ltype), C.int(ccltype))) } // TemplateMatchMode is the type of the template matching operation. type TemplateMatchMode int const ( // TmSqdiff maps to TM_SQDIFF TmSqdiff TemplateMatchMode = 0 // TmSqdiffNormed maps to TM_SQDIFF_NORMED TmSqdiffNormed = 1 // TmCcorr maps to TM_CCORR TmCcorr = 2 // TmCcorrNormed maps to TM_CCORR_NORMED TmCcorrNormed = 3 // TmCcoeff maps to TM_CCOEFF TmCcoeff = 4 // TmCcoeffNormed maps to TM_CCOEFF_NORMED TmCcoeffNormed = 5 ) // MatchTemplate compares a template against overlapped image regions. // // For further details, please see: // https://docs.opencv.org/master/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be // func MatchTemplate(image Mat, templ Mat, result *Mat, method TemplateMatchMode, mask Mat) { C.MatchTemplate(image.p, templ.p, result.p, C.int(method), mask.p) } // Moments calculates all of the moments up to the third order of a polygon // or rasterized shape. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga556a180f43cab22649c23ada36a8a139 // func Moments(src Mat, binaryImage bool) map[string]float64 { r := C.Moments(src.p, C.bool(binaryImage)) result := make(map[string]float64) result["m00"] = float64(r.m00) result["m10"] = float64(r.m10) result["m01"] = float64(r.m01) result["m20"] = float64(r.m20) result["m11"] = float64(r.m11) result["m02"] = float64(r.m02) result["m30"] = float64(r.m30) result["m21"] = float64(r.m21) result["m12"] = float64(r.m12) result["m03"] = float64(r.m03) result["mu20"] = float64(r.mu20) result["mu11"] = float64(r.mu11) result["mu02"] = float64(r.mu02) result["mu30"] = float64(r.mu30) result["mu21"] = float64(r.mu21) result["mu12"] = float64(r.mu12) result["mu03"] = float64(r.mu03) result["nu20"] = float64(r.nu20) result["nu11"] = float64(r.nu11) result["nu02"] = float64(r.nu02) result["nu30"] = float64(r.nu30) result["nu21"] = float64(r.nu21) result["nu12"] = float64(r.nu12) result["nu03"] = float64(r.nu03) return result } // PyrDown blurs an image and downsamples it. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaf9bba239dfca11654cb7f50f889fc2ff // func PyrDown(src Mat, dst *Mat, ksize image.Point, borderType BorderType) { pSize := C.struct_Size{ height: C.int(ksize.X), width: C.int(ksize.Y), } C.PyrDown(src.p, dst.p, pSize, C.int(borderType)) } // PyrUp upsamples an image and then blurs it. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gada75b59bdaaca411ed6fee10085eb784 // func PyrUp(src Mat, dst *Mat, ksize image.Point, borderType BorderType) { pSize := C.struct_Size{ height: C.int(ksize.X), width: C.int(ksize.Y), } C.PyrUp(src.p, dst.p, pSize, C.int(borderType)) } // MorphologyDefaultBorder returns "magic" border value for erosion and dilation. // It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga94756fad83d9d24d29c9bf478558c40a // func MorphologyDefaultBorderValue() Scalar { var scalar C.Scalar = C.MorphologyDefaultBorderValue() return NewScalar(float64(scalar.val1), float64(scalar.val2), float64(scalar.val3), float64(scalar.val4)) } // MorphologyEx performs advanced morphological transformations. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f // func MorphologyEx(src Mat, dst *Mat, op MorphType, kernel Mat) { C.MorphologyEx(src.p, dst.p, C.int(op), kernel.p) } // MorphologyExWithParams performs advanced morphological transformations. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f // func MorphologyExWithParams(src Mat, dst *Mat, op MorphType, kernel Mat, iterations int, borderType BorderType) { pt := C.struct_Point{ x: C.int(-1), y: C.int(-1), } C.MorphologyExWithParams(src.p, dst.p, C.int(op), kernel.p, pt, C.int(iterations), C.int(borderType)) } // MorphShape is the shape of the structuring element used for Morphing operations. type MorphShape int const ( // MorphRect is the rectangular morph shape. MorphRect MorphShape = 0 // MorphCross is the cross morph shape. MorphCross = 1 // MorphEllipse is the ellipse morph shape. MorphEllipse = 2 ) // GetStructuringElement returns a structuring element of the specified size // and shape for morphological operations. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac342a1bb6eabf6f55c803b09268e36dc // func GetStructuringElement(shape MorphShape, ksize image.Point) Mat { sz := C.struct_Size{ width: C.int(ksize.X), height: C.int(ksize.Y), } return newMat(C.GetStructuringElement(C.int(shape), sz)) } // MorphType type of morphological operation. type MorphType int const ( // MorphErode operation MorphErode MorphType = 0 // MorphDilate operation MorphDilate = 1 // MorphOpen operation MorphOpen = 2 // MorphClose operation MorphClose = 3 // MorphGradient operation MorphGradient = 4 // MorphTophat operation MorphTophat = 5 // MorphBlackhat operation MorphBlackhat = 6 // MorphHitmiss operation MorphHitmiss = 7 ) // BorderType type of border. type BorderType int const ( // BorderConstant border type BorderConstant BorderType = 0 // BorderReplicate border type BorderReplicate = 1 // BorderReflect border type BorderReflect = 2 // BorderWrap border type BorderWrap = 3 // BorderReflect101 border type BorderReflect101 = 4 // BorderTransparent border type BorderTransparent = 5 // BorderDefault border type BorderDefault = BorderReflect101 // BorderIsolated border type BorderIsolated = 16 ) // GaussianBlur blurs an image Mat using a Gaussian filter. // The function convolves the src Mat image into the dst Mat using // the specified Gaussian kernel params. // // For further details, please see: // http://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1 // func GaussianBlur(src Mat, dst *Mat, ksize image.Point, sigmaX float64, sigmaY float64, borderType BorderType) { pSize := C.struct_Size{ width: C.int(ksize.X), height: C.int(ksize.Y), } C.GaussianBlur(src.p, dst.p, pSize, C.double(sigmaX), C.double(sigmaY), C.int(borderType)) } // Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gacea54f142e81b6758cb6f375ce782c8d // func Sobel(src Mat, dst *Mat, ddepth, dx, dy, ksize int, scale, delta float64, borderType BorderType) { C.Sobel(src.p, dst.p, C.int(ddepth), C.int(dx), C.int(dy), C.int(ksize), C.double(scale), C.double(delta), C.int(borderType)) } // SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga405d03b20c782b65a4daf54d233239a2 // func SpatialGradient(src Mat, dx, dy *Mat, ksize int, borderType BorderType) { C.SpatialGradient(src.p, dx.p, dy.p, C.int(ksize), C.int(borderType)) } // Laplacian calculates the Laplacian of an image. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad78703e4c8fe703d479c1860d76429e6 // func Laplacian(src Mat, dst *Mat, dDepth int, size int, scale float64, delta float64, borderType BorderType) { C.Laplacian(src.p, dst.p, C.int(dDepth), C.int(size), C.double(scale), C.double(delta), C.int(borderType)) } // Scharr calculates the first x- or y- image derivative using Scharr operator. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9 // func Scharr(src Mat, dst *Mat, dDepth int, dx int, dy int, scale float64, delta float64, borderType BorderType) { C.Scharr(src.p, dst.p, C.int(dDepth), C.int(dx), C.int(dy), C.double(scale), C.double(delta), C.int(borderType)) } // MedianBlur blurs an image using the median filter. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9 // func MedianBlur(src Mat, dst *Mat, ksize int) { C.MedianBlur(src.p, dst.p, C.int(ksize)) } // Canny finds edges in an image using the Canny algorithm. // The function finds edges in the input image image and marks // them in the output map edges using the Canny algorithm. // The smallest value between threshold1 and threshold2 is used // for edge linking. The largest value is used to // find initial segments of strong edges. // See http://en.wikipedia.org/wiki/Canny_edge_detector // // For further details, please see: // http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de // func Canny(src Mat, edges *Mat, t1 float32, t2 float32) { C.Canny(src.p, edges.p, C.double(t1), C.double(t2)) } // CornerSubPix Refines the corner locations. The function iterates to find // the sub-pixel accurate location of corners or radial saddle points. // // For further details, please see: // https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e // func CornerSubPix(img Mat, corners *Mat, winSize image.Point, zeroZone image.Point, criteria TermCriteria) { winSz := C.struct_Size{ width: C.int(winSize.X), height: C.int(winSize.Y), } zeroSz := C.struct_Size{ width: C.int(zeroZone.X), height: C.int(zeroZone.Y), } C.CornerSubPix(img.p, corners.p, winSz, zeroSz, criteria.p) return } // GoodFeaturesToTrack determines strong corners on an image. The function // finds the most prominent corners in the image or in the specified image region. // // For further details, please see: // https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga1d6bb77486c8f92d79c8793ad995d541 // func GoodFeaturesToTrack(img Mat, corners *Mat, maxCorners int, quality float64, minDist float64) { C.GoodFeaturesToTrack(img.p, corners.p, C.int(maxCorners), C.double(quality), C.double(minDist)) } // GrabCutMode is the flag for GrabCut algorithm. type GrabCutMode int const ( // GCInitWithRect makes the function initialize the state and the mask using the provided rectangle. // After that it runs the itercount iterations of the algorithm. GCInitWithRect GrabCutMode = 0 // GCInitWithMask makes the function initialize the state using the provided mask. // GCInitWithMask and GCInitWithRect can be combined. // Then all the pixels outside of the ROI are automatically initialized with GC_BGD. GCInitWithMask = 1 // GCEval means that the algorithm should just resume. GCEval = 2 // GCEvalFreezeModel means that the algorithm should just run a single iteration of the GrabCut algorithm // with the fixed model GCEvalFreezeModel = 3 ) // Grabcut runs the GrabCut algorithm. // The function implements the GrabCut image segmentation algorithm. // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga909c1dda50efcbeaa3ce126be862b37f // func GrabCut(img Mat, mask *Mat, r image.Rectangle, bgdModel *Mat, fgdModel *Mat, iterCount int, mode GrabCutMode) { cRect := C.struct_Rect{ x: C.int(r.Min.X), y: C.int(r.Min.Y), width: C.int(r.Size().X), height: C.int(r.Size().Y), } C.GrabCut(img.p, mask.p, cRect, bgdModel.p, fgdModel.p, C.int(iterCount), C.int(mode)) } // HoughMode is the type for Hough transform variants. type HoughMode int const ( // HoughStandard is the classical or standard Hough transform. HoughStandard HoughMode = 0 // HoughProbabilistic is the probabilistic Hough transform (more efficient // in case if the picture contains a few long linear segments). HoughProbabilistic = 1 // HoughMultiScale is the multi-scale variant of the classical Hough // transform. HoughMultiScale = 2 // HoughGradient is basically 21HT, described in: HK Yuen, John Princen, // John Illingworth, and Josef Kittler. Comparative study of hough // transform methods for circle finding. Image and Vision Computing, // 8(1):71–77, 1990. HoughGradient = 3 ) // HoughCircles finds circles in a grayscale image using the Hough transform. // The only "method" currently supported is HoughGradient. If you want to pass // more parameters, please see `HoughCirclesWithParams`. // // For further details, please see: // https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d // func HoughCircles(src Mat, circles *Mat, method HoughMode, dp, minDist float64) { C.HoughCircles(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist)) } // HoughCirclesWithParams finds circles in a grayscale image using the Hough // transform. The only "method" currently supported is HoughGradient. // // For further details, please see: // https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d // func HoughCirclesWithParams(src Mat, circles *Mat, method HoughMode, dp, minDist, param1, param2 float64, minRadius, maxRadius int) { C.HoughCirclesWithParams(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist), C.double(param1), C.double(param2), C.int(minRadius), C.int(maxRadius)) } // HoughLines implements the standard or standard multi-scale Hough transform // algorithm for line detection. For a good explanation of Hough transform, see: // http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm // // For further details, please see: // http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga46b4e588934f6c8dfd509cc6e0e4545a // func HoughLines(src Mat, lines *Mat, rho float32, theta float32, threshold int) { C.HoughLines(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold)) } // HoughLinesP implements the probabilistic Hough transform // algorithm for line detection. For a good explanation of Hough transform, see: // http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm // // For further details, please see: // http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga8618180a5948286384e3b7ca02f6feeb // func HoughLinesP(src Mat, lines *Mat, rho float32, theta float32, threshold int) { C.HoughLinesP(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold)) } func HoughLinesPWithParams(src Mat, lines *Mat, rho float32, theta float32, threshold int, minLineLength float32, maxLineGap float32) { C.HoughLinesPWithParams(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold), C.double(minLineLength), C.double(maxLineGap)) } // HoughLinesPointSet implements the Hough transform algorithm for line // detection on a set of points. For a good explanation of Hough transform, see: // http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm // // For further details, please see: // https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga2858ef61b4e47d1919facac2152a160e // func HoughLinesPointSet(points Mat, lines *Mat, linesMax int, threshold int, minRho float32, maxRho float32, rhoStep float32, minTheta float32, maxTheta float32, thetaStep float32) { C.HoughLinesPointSet(points.p, lines.p, C.int(linesMax), C.int(threshold), C.double(minRho), C.double(maxRho), C.double(rhoStep), C.double(minTheta), C.double(maxTheta), C.double(thetaStep)) } // Integral calculates one or more integral images for the source image. // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28 // func Integral(src Mat, sum *Mat, sqsum *Mat, tilted *Mat) { C.Integral(src.p, sum.p, sqsum.p, tilted.p) } // ThresholdType type of threshold operation. type ThresholdType int const ( // ThresholdBinary threshold type ThresholdBinary ThresholdType = 0 // ThresholdBinaryInv threshold type ThresholdBinaryInv = 1 // ThresholdTrunc threshold type ThresholdTrunc = 2 // ThresholdToZero threshold type ThresholdToZero = 3 // ThresholdToZeroInv threshold type ThresholdToZeroInv = 4 // ThresholdMask threshold type ThresholdMask = 7 // ThresholdOtsu threshold type ThresholdOtsu = 8 // ThresholdTriangle threshold type ThresholdTriangle = 16 ) // Threshold applies a fixed-level threshold to each array element. // // For further details, please see: // https://docs.opencv.org/3.3.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57 // func Threshold(src Mat, dst *Mat, thresh float32, maxvalue float32, typ ThresholdType) { C.Threshold(src.p, dst.p, C.double(thresh), C.double(maxvalue), C.int(typ)) } // AdaptiveThresholdType type of adaptive threshold operation. type AdaptiveThresholdType int const ( // AdaptiveThresholdMean threshold type AdaptiveThresholdMean AdaptiveThresholdType = 0 // AdaptiveThresholdGaussian threshold type AdaptiveThresholdGaussian = 1 ) // AdaptiveThreshold applies a fixed-level threshold to each array element. // // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga72b913f352e4a1b1b397736707afcde3 // func AdaptiveThreshold(src Mat, dst *Mat, maxValue float32, adaptiveTyp AdaptiveThresholdType, typ ThresholdType, blockSize int, c float32) { C.AdaptiveThreshold(src.p, dst.p, C.double(maxValue), C.int(adaptiveTyp), C.int(typ), C.int(blockSize), C.double(c)) } // ArrowedLine draws a arrow segment pointing from the first point // to the second one. // // For further details, please see: // https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga0a165a3ca093fd488ac709fdf10c05b2 // func ArrowedLine(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) { sp1 := C.struct_Point{ x: C.int(pt1.X), y: C.int(pt1.Y), } sp2 := C.struct_Point{ x: C.int(pt2.X), y: C.int(pt2.Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.ArrowedLine(img.p, sp1, sp2, sColor, C.int(thickness)) } // Circle draws a circle. // // For further details, please see: // https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf10604b069374903dbd0f0488cb43670 // func Circle(img *Mat, center image.Point, radius int, c color.RGBA, thickness int) { pc := C.struct_Point{ x: C.int(center.X), y: C.int(center.Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.Circle(img.p, pc, C.int(radius), sColor, C.int(thickness)) } // Ellipse draws a simple or thick elliptic arc or fills an ellipse sector. // // For further details, please see: // https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga28b2267d35786f5f890ca167236cbc69 // func Ellipse(img *Mat, center, axes image.Point, angle, startAngle, endAngle float64, c color.RGBA, thickness int) { pc := C.struct_Point{ x: C.int(center.X), y: C.int(center.Y), } pa := C.struct_Point{ x: C.int(axes.X), y: C.int(axes.Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.Ellipse(img.p, pc, pa, C.double(angle), C.double(startAngle), C.double(endAngle), sColor, C.int(thickness)) } // Line draws a line segment connecting two points. // // For further details, please see: // https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga7078a9fae8c7e7d13d24dac2520ae4a2 // func Line(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) { sp1 := C.struct_Point{ x: C.int(pt1.X), y: C.int(pt1.Y), } sp2 := C.struct_Point{ x: C.int(pt2.X), y: C.int(pt2.Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.Line(img.p, sp1, sp2, sColor, C.int(thickness)) } // Rectangle draws a simple, thick, or filled up-right rectangle. // It renders a rectangle with the desired characteristics to the target Mat image. // // For further details, please see: // http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga346ac30b5c74e9b5137576c9ee9e0e8c // func Rectangle(img *Mat, r image.Rectangle, c color.RGBA, thickness int) { cRect := C.struct_Rect{ x: C.int(r.Min.X), y: C.int(r.Min.Y), width: C.int(r.Size().X), height: C.int(r.Size().Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.Rectangle(img.p, cRect, sColor, C.int(thickness)) } // FillPoly fills the area bounded by one or more polygons. // // For more information, see: // https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf30888828337aa4c6b56782b5dfbd4b7 func FillPoly(img *Mat, pts [][]image.Point, c color.RGBA) { points := make([]C.struct_Points, len(pts)) for i, pt := range pts { func() { p := (*C.struct_Point)(C.malloc(C.size_t(C.sizeof_struct_Point * len(pt)))) defer C.free(unsafe.Pointer(p)) pa := getPoints(p, len(pt)) for j, point := range pt { pa[j] = C.struct_Point{ x: C.int(point.X), y: C.int(point.Y), } } points[i] = C.struct_Points{ points: (*C.Point)(p), length: C.int(len(pt)), } }() } cPoints := C.struct_Contours{ contours: (*C.struct_Points)(&points[0]), length: C.int(len(pts)), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.FillPoly(img.p, cPoints, sColor) } // HersheyFont are the font libraries included in OpenCV. // Only a subset of the available Hershey fonts are supported by OpenCV. // // For more information, see: // http://sources.isc.org/utils/misc/hershey-font.txt // type HersheyFont int const ( // FontHersheySimplex is normal size sans-serif font. FontHersheySimplex HersheyFont = 0 // FontHersheyPlain issmall size sans-serif font. FontHersheyPlain = 1 // FontHersheyDuplex normal size sans-serif font // (more complex than FontHersheySIMPLEX). FontHersheyDuplex = 2 // FontHersheyComplex i a normal size serif font. FontHersheyComplex = 3 // FontHersheyTriplex is a normal size serif font // (more complex than FontHersheyCOMPLEX). FontHersheyTriplex = 4 // FontHersheyComplexSmall is a smaller version of FontHersheyCOMPLEX. FontHersheyComplexSmall = 5 // FontHersheyScriptSimplex is a hand-writing style font. FontHersheyScriptSimplex = 6 // FontHersheyScriptComplex is a more complex variant of FontHersheyScriptSimplex. FontHersheyScriptComplex = 7 // FontItalic is the flag for italic font. FontItalic = 16 ) // GetTextSize calculates the width and height of a text string. // It returns an image.Point with the size required to draw text using // a specific font face, scale, and thickness. // // For further details, please see: // http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga3d2abfcb995fd2db908c8288199dba82 // func GetTextSize(text string, fontFace HersheyFont, fontScale float64, thickness int) image.Point { cText := C.CString(text) defer C.free(unsafe.Pointer(cText)) sz := C.GetTextSize(cText, C.int(fontFace), C.double(fontScale), C.int(thickness)) return image.Pt(int(sz.width), int(sz.height)) } // PutText draws a text string. // It renders the specified text string into the img Mat at the location // passed in the "org" param, using the desired font face, font scale, // color, and line thinkness. // // For further details, please see: // http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga5126f47f883d730f633d74f07456c576 // func PutText(img *Mat, text string, org image.Point, fontFace HersheyFont, fontScale float64, c color.RGBA, thickness int) { cText := C.CString(text) defer C.free(unsafe.Pointer(cText)) pOrg := C.struct_Point{ x: C.int(org.X), y: C.int(org.Y), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.PutText(img.p, cText, pOrg, C.int(fontFace), C.double(fontScale), sColor, C.int(thickness)) return } // InterpolationFlags are bit flags that control the interpolation algorithm // that is used. type InterpolationFlags int const ( // InterpolationNearestNeighbor is nearest neighbor. (fast but low quality) InterpolationNearestNeighbor InterpolationFlags = 0 // InterpolationLinear is bilinear interpolation. InterpolationLinear = 1 // InterpolationCubic is bicube interpolation. InterpolationCubic = 2 // InterpolationArea uses pixel area relation. It is preferred for image // decimation as it gives moire-free results. InterpolationArea = 3 // InterpolationLanczos4 is Lanczos interpolation over 8x8 neighborhood. InterpolationLanczos4 = 4 // InterpolationDefault is an alias for InterpolationLinear. InterpolationDefault = InterpolationLinear // InterpolationMax indicates use maximum interpolation. InterpolationMax = 7 ) // Resize resizes an image. // It resizes the image src down to or up to the specified size, storing the // result in dst. Note that src and dst may be the same image. If you wish to // scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise, // if you wish to scale to an explicit size, a non-empty sz may be passed with // zero for both fx and fy. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d func Resize(src Mat, dst *Mat, sz image.Point, fx, fy float64, interp InterpolationFlags) { pSize := C.struct_Size{ width: C.int(sz.X), height: C.int(sz.Y), } C.Resize(src.p, dst.p, pSize, C.double(fx), C.double(fy), C.int(interp)) return } // GetRotationMatrix2D calculates an affine matrix of 2D rotation. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gafbbc470ce83812914a70abfb604f4326 func GetRotationMatrix2D(center image.Point, angle, scale float64) Mat { pc := C.struct_Point{ x: C.int(center.X), y: C.int(center.Y), } return newMat(C.GetRotationMatrix2D(pc, C.double(angle), C.double(scale))) } // WarpAffine applies an affine transformation to an image. For more parameters please check WarpAffineWithParams // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983 func WarpAffine(src Mat, dst *Mat, m Mat, sz image.Point) { pSize := C.struct_Size{ width: C.int(sz.X), height: C.int(sz.Y), } C.WarpAffine(src.p, dst.p, m.p, pSize) } // WarpAffineWithParams applies an affine transformation to an image. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983 func WarpAffineWithParams(src Mat, dst *Mat, m Mat, sz image.Point, flags InterpolationFlags, borderType BorderType, borderValue color.RGBA) { pSize := C.struct_Size{ width: C.int(sz.X), height: C.int(sz.Y), } bv := C.struct_Scalar{ val1: C.double(borderValue.B), val2: C.double(borderValue.G), val3: C.double(borderValue.R), val4: C.double(borderValue.A), } C.WarpAffineWithParams(src.p, dst.p, m.p, pSize, C.int(flags), C.int(borderType), bv) } // WarpPerspective applies a perspective transformation to an image. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87 func WarpPerspective(src Mat, dst *Mat, m Mat, sz image.Point) { pSize := C.struct_Size{ width: C.int(sz.X), height: C.int(sz.Y), } C.WarpPerspective(src.p, dst.p, m.p, pSize) } // Watershed performs a marker-based image segmentation using the watershed algorithm. // // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga3267243e4d3f95165d55a618c65ac6e1 func Watershed(image Mat, markers *Mat) { C.Watershed(image.p, markers.p) } // ColormapTypes are the 12 GNU Octave/MATLAB equivalent colormaps. // // For further details, please see: // https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html type ColormapTypes int // List of the available color maps // // For further details, please see: // https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#ga9a805d8262bcbe273f16be9ea2055a65 const ( ColormapAutumn ColormapTypes = 0 ColormapBone = 1 ColormapJet = 2 ColormapWinter = 3 ColormapRainbow = 4 ColormapOcean = 5 ColormapSummer = 6 ColormapSpring = 7 ColormapCool = 8 ColormapHsv = 9 ColormapPink = 10 ColormapHot = 11 ColormapParula = 12 ) // ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image. // // For further details, please see: // https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15 func ApplyColorMap(src Mat, dst *Mat, colormapType ColormapTypes) { C.ApplyColorMap(src.p, dst.p, C.int(colormapType)) } // ApplyCustomColorMap applies a custom defined colormap on a given image. // // For further details, please see: // https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gacb22288ddccc55f9bd9e6d492b409cae func ApplyCustomColorMap(src Mat, dst *Mat, customColormap Mat) { C.ApplyCustomColorMap(src.p, dst.p, customColormap.p) } // GetPerspectiveTransform returns 3x3 perspective transformation for the // corresponding 4 point pairs. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8c1ae0e3589a9d77fffc962c49b22043 func GetPerspectiveTransform(src, dst []image.Point) Mat { srcPoints := toCPoints(src) dstPoints := toCPoints(dst) return newMat(C.GetPerspectiveTransform(srcPoints, dstPoints)) } // DrawContours draws contours outlines or filled contours. // // For further details, please see: // https://docs.opencv.org/3.3.1/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc func DrawContours(img *Mat, contours [][]image.Point, contourIdx int, c color.RGBA, thickness int) { cntrs := make([]C.struct_Points, len(contours)) for i, contour := range contours { func() { p := (*C.struct_Point)(C.malloc(C.size_t(C.sizeof_struct_Point * len(contour)))) defer C.free(unsafe.Pointer(p)) pa := getPoints(p, len(contour)) for j, point := range contour { pa[j] = C.struct_Point{ x: C.int(point.X), y: C.int(point.Y), } } cntrs[i] = C.struct_Points{ points: (*C.Point)(p), length: C.int(len(contour)), } }() } cContours := C.struct_Contours{ contours: (*C.struct_Points)(&cntrs[0]), length: C.int(len(contours)), } sColor := C.struct_Scalar{ val1: C.double(c.B), val2: C.double(c.G), val3: C.double(c.R), val4: C.double(c.A), } C.DrawContours(img.p, cContours, C.int(contourIdx), sColor, C.int(thickness)) } // Remap applies a generic geometrical transformation to an image. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4 func Remap(src Mat, dst, map1, map2 *Mat, interpolation InterpolationFlags, borderMode BorderType, borderValue color.RGBA) { bv := C.struct_Scalar{ val1: C.double(borderValue.B), val2: C.double(borderValue.G), val3: C.double(borderValue.R), val4: C.double(borderValue.A), } C.Remap(src.p, dst.p, map1.p, map2.p, C.int(interpolation), C.int(borderMode), bv) } // Filter2D applies an arbitrary linear filter to an image. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04 func Filter2D(src Mat, dst *Mat, ddepth int, kernel Mat, anchor image.Point, delta float64, borderType BorderType) { anchorP := C.struct_Point{ x: C.int(anchor.X), y: C.int(anchor.Y), } C.Filter2D(src.p, dst.p, C.int(ddepth), kernel.p, anchorP, C.double(delta), C.int(borderType)) } // SepFilter2D applies a separable linear filter to the image. // // For further details, please see: // https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga910e29ff7d7b105057d1625a4bf6318d func SepFilter2D(src Mat, dst *Mat, ddepth int, kernelX, kernelY Mat, anchor image.Point, delta float64, borderType BorderType) { anchorP := C.struct_Point{ x: C.int(anchor.X), y: C.int(anchor.Y), } C.SepFilter2D(src.p, dst.p, C.int(ddepth), kernelX.p, kernelY.p, anchorP, C.double(delta), C.int(borderType)) } // LogPolar remaps an image to semilog-polar coordinates space. // // For further details, please see: // https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaec3a0b126a85b5ca2c667b16e0ae022d func LogPolar(src Mat, dst *Mat, center image.Point, m float64, flags InterpolationFlags) { centerP := C.struct_Point{ x: C.int(center.X), y: C.int(center.Y), } C.LogPolar(src.p, dst.p, centerP, C.double(m), C.int(flags)) } // DistanceTypes types for Distance Transform and M-estimatorss // // For further details, please see: // https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#gaa2bfbebbc5c320526897996aafa1d8eb type DistanceTypes int const ( DistUser DistanceTypes = 0 DistL1 = 1 DistL2 = 2 DistC = 3 DistL12 = 4 DistFair = 5 DistWelsch = 6 DistHuber = 7 ) // FitLine fits a line to a 2D or 3D point set. // // For further details, please see: // https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f func FitLine(pts []image.Point, line *Mat, distType DistanceTypes, param, reps, aeps float64) { cPoints := toCPoints(pts) C.FitLine(cPoints, line.p, C.int(distType), C.double(param), C.double(reps), C.double(aeps)) } // CLAHE is a wrapper around the cv::CLAHE algorithm. type CLAHE struct { // C.CLAHE p unsafe.Pointer } // NewCLAHE returns a new CLAHE algorithm // // For further details, please see: // https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html // func NewCLAHE() CLAHE { return CLAHE{p: unsafe.Pointer(C.CLAHE_Create())} } // NewCLAHEWithParams returns a new CLAHE algorithm // // For further details, please see: // https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html // func NewCLAHEWithParams(clipLimit float64, tileGridSize image.Point) CLAHE { pSize := C.struct_Size{ width: C.int(tileGridSize.X), height: C.int(tileGridSize.Y), } return CLAHE{p: unsafe.Pointer(C.CLAHE_CreateWithParams(C.double(clipLimit), pSize))} } // Close CLAHE. func (c *CLAHE) Close() error { C.CLAHE_Close((C.CLAHE)(c.p)) c.p = nil return nil } // Apply CLAHE. // // For further details, please see: // https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html#a4e92e0e427de21be8d1fae8dcd862c5e // func (c *CLAHE) Apply(src Mat, dst *Mat) { C.CLAHE_Apply((C.CLAHE)(c.p), src.p, dst.p) }