package gocv /* #include #include "core.h" */ import "C" import ( "errors" "image" "image/color" "reflect" "unsafe" ) const ( // MatChannels1 is a single channel Mat. MatChannels1 = 0 // MatChannels2 is 2 channel Mat. MatChannels2 = 8 // MatChannels3 is 3 channel Mat. MatChannels3 = 16 // MatChannels4 is 4 channel Mat. MatChannels4 = 24 ) // MatType is the type for the various different kinds of Mat you can create. type MatType int const ( // MatTypeCV8U is a Mat of 8-bit unsigned int MatTypeCV8U MatType = 0 // MatTypeCV8S is a Mat of 8-bit signed int MatTypeCV8S MatType = 1 // MatTypeCV16U is a Mat of 16-bit unsigned int MatTypeCV16U MatType = 2 // MatTypeCV16S is a Mat of 16-bit signed int MatTypeCV16S MatType = 3 // MatTypeCV16SC2 is a Mat of 16-bit signed int with 2 channels MatTypeCV16SC2 = MatTypeCV16S + MatChannels2 // MatTypeCV32S is a Mat of 32-bit signed int MatTypeCV32S MatType = 4 // MatTypeCV32F is a Mat of 32-bit float MatTypeCV32F MatType = 5 // MatTypeCV64F is a Mat of 64-bit float MatTypeCV64F MatType = 6 // MatTypeCV8UC1 is a Mat of 8-bit unsigned int with a single channel MatTypeCV8UC1 = MatTypeCV8U + MatChannels1 // MatTypeCV8UC2 is a Mat of 8-bit unsigned int with 2 channels MatTypeCV8UC2 = MatTypeCV8U + MatChannels2 // MatTypeCV8UC3 is a Mat of 8-bit unsigned int with 3 channels MatTypeCV8UC3 = MatTypeCV8U + MatChannels3 // MatTypeCV8UC4 is a Mat of 8-bit unsigned int with 4 channels MatTypeCV8UC4 = MatTypeCV8U + MatChannels4 // MatTypeCV8SC1 is a Mat of 8-bit signed int with a single channel MatTypeCV8SC1 = MatTypeCV8S + MatChannels1 // MatTypeCV8SC2 is a Mat of 8-bit signed int with 2 channels MatTypeCV8SC2 = MatTypeCV8S + MatChannels2 // MatTypeCV8SC3 is a Mat of 8-bit signed int with 3 channels MatTypeCV8SC3 = MatTypeCV8S + MatChannels3 // MatTypeCV8SC4 is a Mat of 8-bit signed int with 4 channels MatTypeCV8SC4 = MatTypeCV8S + MatChannels4 // MatTypeCV16UC1 is a Mat of 16-bit unsigned int with a single channel MatTypeCV16UC1 = MatTypeCV16U + MatChannels1 // MatTypeCV16UC2 is a Mat of 16-bit unsigned int with 2 channels MatTypeCV16UC2 = MatTypeCV16U + MatChannels2 // MatTypeCV16UC3 is a Mat of 16-bit unsigned int with 3 channels MatTypeCV16UC3 = MatTypeCV16U + MatChannels3 // MatTypeCV16UC4 is a Mat of 16-bit unsigned int with 4 channels MatTypeCV16UC4 = MatTypeCV16U + MatChannels4 // MatTypeCV16SC1 is a Mat of 16-bit signed int with a single channel MatTypeCV16SC1 = MatTypeCV16S + MatChannels1 // MatTypeCV16SC3 is a Mat of 16-bit signed int with 3 channels MatTypeCV16SC3 = MatTypeCV16S + MatChannels3 // MatTypeCV16SC4 is a Mat of 16-bit signed int with 4 channels MatTypeCV16SC4 = MatTypeCV16S + MatChannels4 // MatTypeCV32SC1 is a Mat of 32-bit signed int with a single channel MatTypeCV32SC1 = MatTypeCV32S + MatChannels1 // MatTypeCV32SC2 is a Mat of 32-bit signed int with 2 channels MatTypeCV32SC2 = MatTypeCV32S + MatChannels2 // MatTypeCV32SC3 is a Mat of 32-bit signed int with 3 channels MatTypeCV32SC3 = MatTypeCV32S + MatChannels3 // MatTypeCV32SC4 is a Mat of 32-bit signed int with 4 channels MatTypeCV32SC4 = MatTypeCV32S + MatChannels4 // MatTypeCV32FC1 is a Mat of 32-bit float int with a single channel MatTypeCV32FC1 = MatTypeCV32F + MatChannels1 // MatTypeCV32FC2 is a Mat of 32-bit float int with 2 channels MatTypeCV32FC2 = MatTypeCV32F + MatChannels2 // MatTypeCV32FC3 is a Mat of 32-bit float int with 3 channels MatTypeCV32FC3 = MatTypeCV32F + MatChannels3 // MatTypeCV32FC4 is a Mat of 32-bit float int with 4 channels MatTypeCV32FC4 = MatTypeCV32F + MatChannels4 // MatTypeCV64FC1 is a Mat of 64-bit float int with a single channel MatTypeCV64FC1 = MatTypeCV64F + MatChannels1 // MatTypeCV64FC2 is a Mat of 64-bit float int with 2 channels MatTypeCV64FC2 = MatTypeCV64F + MatChannels2 // MatTypeCV64FC3 is a Mat of 64-bit float int with 3 channels MatTypeCV64FC3 = MatTypeCV64F + MatChannels3 // MatTypeCV64FC4 is a Mat of 64-bit float int with 4 channels MatTypeCV64FC4 = MatTypeCV64F + MatChannels4 ) // CompareType is used for Compare operations to indicate which kind of // comparison to use. type CompareType int const ( // CompareEQ src1 is equal to src2. CompareEQ CompareType = 0 // CompareGT src1 is greater than src2. CompareGT CompareType = 1 // CompareGE src1 is greater than or equal to src2. CompareGE CompareType = 2 // CompareLT src1 is less than src2. CompareLT CompareType = 3 // CompareLE src1 is less than or equal to src2. CompareLE CompareType = 4 // CompareNE src1 is unequal to src2. CompareNE CompareType = 5 ) type Point2f struct { X float32 Y float32 } var ErrEmptyByteSlice = errors.New("empty byte array") // Mat represents an n-dimensional dense numerical single-channel // or multi-channel array. It can be used to store real or complex-valued // vectors and matrices, grayscale or color images, voxel volumes, // vector fields, point clouds, tensors, and histograms. // // For further details, please see: // http://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html // type Mat struct { p C.Mat // Non-nil if Mat was created with a []byte (using NewMatFromBytes()). Nil otherwise. d []byte } // NewMat returns a new empty Mat. func NewMat() Mat { return newMat(C.Mat_New()) } // NewMatWithSize returns a new Mat with a specific size and type. func NewMatWithSize(rows int, cols int, mt MatType) Mat { return newMat(C.Mat_NewWithSize(C.int(rows), C.int(cols), C.int(mt))) } // NewMatWithSizes returns a new multidimensional Mat with a specific size and type. func NewMatWithSizes(sizes []int, mt MatType) Mat { sizesArray := make([]C.int, len(sizes)) for i, s := range sizes { sizesArray[i] = C.int(s) } sizesIntVector := C.IntVector{ val: (*C.int)(&sizesArray[0]), length: C.int(len(sizes)), } return newMat(C.Mat_NewWithSizes(sizesIntVector, C.int(mt))) } // NewMatWithSizesWithScalar returns a new multidimensional Mat with a specific size, type and scalar value. func NewMatWithSizesWithScalar(sizes []int, mt MatType, s Scalar) Mat { csizes := []C.int{} for _, v := range sizes { csizes = append(csizes, C.int(v)) } sizesVector := C.struct_IntVector{} sizesVector.val = (*C.int)(&csizes[0]) sizesVector.length = (C.int)(len(csizes)) sVal := C.struct_Scalar{ val1: C.double(s.Val1), val2: C.double(s.Val2), val3: C.double(s.Val3), val4: C.double(s.Val4), } return newMat(C.Mat_NewWithSizesFromScalar(sizesVector, C.int(mt), sVal)) } // NewMatWithSizesWithScalar returns a new multidimensional Mat with a specific size, type and preexisting data. func NewMatWithSizesFromBytes(sizes []int, mt MatType, data []byte) (Mat, error) { cBytes, err := toByteArray(data) if err != nil { return Mat{}, err } csizes := []C.int{} for _, v := range sizes { csizes = append(csizes, C.int(v)) } sizesVector := C.struct_IntVector{} sizesVector.val = (*C.int)(&csizes[0]) sizesVector.length = (C.int)(len(csizes)) return newMat(C.Mat_NewWithSizesFromBytes(sizesVector, C.int(mt), *cBytes)), nil } // NewMatFromScalar returns a new Mat for a specific Scalar value func NewMatFromScalar(s Scalar, mt MatType) Mat { sVal := C.struct_Scalar{ val1: C.double(s.Val1), val2: C.double(s.Val2), val3: C.double(s.Val3), val4: C.double(s.Val4), } return newMat(C.Mat_NewFromScalar(sVal, C.int(mt))) } // NewMatWithSizeFromScalar returns a new Mat for a specific Scala value with a specific size and type // This simplifies creation of specific color filters or creating Mats of specific colors and sizes func NewMatWithSizeFromScalar(s Scalar, rows int, cols int, mt MatType) Mat { sVal := C.struct_Scalar{ val1: C.double(s.Val1), val2: C.double(s.Val2), val3: C.double(s.Val3), val4: C.double(s.Val4), } return newMat(C.Mat_NewWithSizeFromScalar(sVal, C.int(rows), C.int(cols), C.int(mt))) } // NewMatFromBytes returns a new Mat with a specific size and type, initialized from a []byte. func NewMatFromBytes(rows int, cols int, mt MatType, data []byte) (Mat, error) { cBytes, err := toByteArray(data) if err != nil { return Mat{}, err } mat := newMat(C.Mat_NewFromBytes(C.int(rows), C.int(cols), C.int(mt), *cBytes)) // Store a reference to the backing data slice. This is needed because we pass the backing // array directly to C code and without keeping a Go reference to it, it might end up // garbage collected which would result in crashes. // // TODO(bga): This could live in newMat() but I wanted to reduce the change surface. // TODO(bga): Code that needs access to the array from Go could use this directly. mat.d = data return mat, nil } // Returns an identity matrix of the specified size and type. // // The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to Mat::ones. // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a2cf9b9acde7a9852542bbc20ef851ed2 func Eye(rows int, cols int, mt MatType) Mat { return newMat(C.Eye(C.int(rows), C.int(cols), C.int(mt))) } // Returns a zero array of the specified size and type. // // The method returns a Matlab-style zero array initializer. // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a0b57b6a326c8876d944d188a46e0f556 func Zeros(rows int, cols int, mt MatType) Mat { return newMat(C.Zeros(C.int(rows), C.int(cols), C.int(mt))) } // Returns an array of all 1's of the specified size and type. // // The method returns a Matlab-style 1's array initializer // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a69ae0402d116fc9c71908d8508dc2f09 func Ones(rows int, cols int, mt MatType) Mat { return newMat(C.Ones(C.int(rows), C.int(cols), C.int(mt))) } // FromPtr returns a new Mat with a specific size and type, initialized from a Mat Ptr. func (m *Mat) FromPtr(rows int, cols int, mt MatType, prow int, pcol int) (Mat, error) { return newMat(C.Mat_FromPtr(m.p, C.int(rows), C.int(cols), C.int(mt), C.int(prow), C.int(pcol))), nil } // Ptr returns the Mat's underlying object pointer. func (m *Mat) Ptr() C.Mat { return m.p } // Empty determines if the Mat is empty or not. func (m *Mat) Empty() bool { isEmpty := C.Mat_Empty(m.p) return isEmpty != 0 } // IsContinuous determines if the Mat is continuous. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#aa90cea495029c7d1ee0a41361ccecdf3 // func (m *Mat) IsContinuous() bool { return bool(C.Mat_IsContinuous(m.p)) } // Clone returns a cloned full copy of the Mat. func (m *Mat) Clone() Mat { return newMat(C.Mat_Clone(m.p)) } // CopyTo copies Mat into destination Mat. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a33fd5d125b4c302b0c9aa86980791a77 // func (m *Mat) CopyTo(dst *Mat) { C.Mat_CopyTo(m.p, dst.p) return } // CopyToWithMask copies Mat into destination Mat after applying the mask Mat. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a626fe5f96d02525e2604d2ad46dd574f // func (m *Mat) CopyToWithMask(dst *Mat, mask Mat) { C.Mat_CopyToWithMask(m.p, dst.p, mask.p) return } // ConvertTo converts Mat into destination Mat. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#adf88c60c5b4980e05bb556080916978b // func (m *Mat) ConvertTo(dst *Mat, mt MatType) { C.Mat_ConvertTo(m.p, dst.p, C.int(mt)) return } func (m *Mat) ConvertToWithParams(dst *Mat, mt MatType, alpha, beta float32) { C.Mat_ConvertToWithParams(m.p, dst.p, C.int(mt), C.float(alpha), C.float(beta)) return } // Total returns the total number of array elements. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#aa4d317d43fb0cba9c2503f3c61b866c8 // func (m *Mat) Total() int { return int(C.Mat_Total(m.p)) } // Size returns an array with one element for each dimension containing the size of that dimension for the Mat. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#aa4d317d43fb0cba9c2503f3c61b866c8 // func (m *Mat) Size() (dims []int) { cdims := C.IntVector{} C.Mat_Size(m.p, &cdims) defer C.IntVector_Close(cdims) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(cdims.val)), Len: int(cdims.length), Cap: int(cdims.length), } pdims := *(*[]C.int)(unsafe.Pointer(h)) for i := 0; i < int(cdims.length); i++ { dims = append(dims, int(pdims[i])) } return } // ToBytes copies the underlying Mat data to a byte array. // // For further details, please see: // https://docs.opencv.org/3.3.1/d3/d63/classcv_1_1Mat.html#a4d33bed1c850265370d2af0ff02e1564 func (m *Mat) ToBytes() []byte { b := C.Mat_DataPtr(m.p) return toGoBytes(b) } // DataPtrUint8 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrUint8() ([]uint8, error) { if !m.IsContinuous() { return nil, errors.New("DataPtrUint8 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length), Cap: int(p.length), } return *(*[]uint8)(unsafe.Pointer(h)), nil } // DataPtrInt8 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrInt8() ([]int8, error) { if m.Type()&MatTypeCV8S != MatTypeCV8S { return nil, errors.New("DataPtrInt8 only supports MatTypeCV8S") } if !m.IsContinuous() { return nil, errors.New("DataPtrInt8 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length), Cap: int(p.length), } return *(*[]int8)(unsafe.Pointer(h)), nil } // DataPtrUint16 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrUint16() ([]uint16, error) { if m.Type()&MatTypeCV16U != MatTypeCV16U { return nil, errors.New("DataPtrUint16 only supports MatTypeCV16U") } if !m.IsContinuous() { return nil, errors.New("DataPtrUint16 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length) / 2, Cap: int(p.length) / 2, } return *(*[]uint16)(unsafe.Pointer(h)), nil } // DataPtrInt16 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrInt16() ([]int16, error) { if m.Type()&MatTypeCV16S != MatTypeCV16S { return nil, errors.New("DataPtrInt16 only supports MatTypeCV16S") } if !m.IsContinuous() { return nil, errors.New("DataPtrInt16 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length) / 2, Cap: int(p.length) / 2, } return *(*[]int16)(unsafe.Pointer(h)), nil } // DataPtrFloat32 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrFloat32() ([]float32, error) { if m.Type()&MatTypeCV32F != MatTypeCV32F { return nil, errors.New("DataPtrFloat32 only supports MatTypeCV32F") } if !m.IsContinuous() { return nil, errors.New("DataPtrFloat32 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length) / 4, Cap: int(p.length) / 4, } return *(*[]float32)(unsafe.Pointer(h)), nil } // DataPtrFloat64 returns a slice that references the OpenCV allocated data. // // The data is no longer valid once the Mat has been closed. Any data that // needs to be accessed after the Mat is closed must be copied into Go memory. func (m *Mat) DataPtrFloat64() ([]float64, error) { if m.Type()&MatTypeCV64F != MatTypeCV64F { return nil, errors.New("DataPtrFloat64 only supports MatTypeCV64F") } if !m.IsContinuous() { return nil, errors.New("DataPtrFloat64 requires continuous Mat") } p := C.Mat_DataPtr(m.p) h := &reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(p.data)), Len: int(p.length) / 8, Cap: int(p.length) / 8, } return *(*[]float64)(unsafe.Pointer(h)), nil } // Region returns a new Mat that points to a region of this Mat. Changes made to the // region Mat will affect the original Mat, since they are pointers to the underlying // OpenCV Mat object. func (m *Mat) Region(rio image.Rectangle) Mat { cRect := C.struct_Rect{ x: C.int(rio.Min.X), y: C.int(rio.Min.Y), width: C.int(rio.Size().X), height: C.int(rio.Size().Y), } return newMat(C.Mat_Region(m.p, cRect)) } // Reshape changes the shape and/or the number of channels of a 2D matrix without copying the data. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#a4eb96e3251417fa88b78e2abd6cfd7d8 // func (m *Mat) Reshape(cn int, rows int) Mat { return newMat(C.Mat_Reshape(m.p, C.int(cn), C.int(rows))) } // ConvertFp16 converts a Mat to half-precision floating point. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga9c25d9ef44a2a48ecc3774b30cb80082 // func (m *Mat) ConvertFp16() Mat { return newMat(C.Mat_ConvertFp16(m.p)) } // Mean calculates the mean value M of array elements, independently for each channel, and return it as Scalar // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga191389f8a0e58180bb13a727782cd461 // func (m *Mat) Mean() Scalar { s := C.Mat_Mean(m.p) return NewScalar(float64(s.val1), float64(s.val2), float64(s.val3), float64(s.val4)) } // MeanWithMask calculates the mean value M of array elements,independently for each channel, // and returns it as Scalar vector while applying the mask. // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga191389f8a0e58180bb13a727782cd461 // func (m *Mat) MeanWithMask(mask Mat) Scalar { s := C.Mat_MeanWithMask(m.p, mask.p) return NewScalar(float64(s.val1), float64(s.val2), float64(s.val3), float64(s.val4)) } // Sqrt calculates a square root of array elements. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga186222c3919657890f88df5a1f64a7d7 // func (m *Mat) Sqrt() Mat { return newMat(C.Mat_Sqrt(m.p)) } // Sum calculates the per-channel pixel sum of an image. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga716e10a2dd9e228e4d3c95818f106722 // func (m *Mat) Sum() Scalar { s := C.Mat_Sum(m.p) return NewScalar(float64(s.val1), float64(s.val2), float64(s.val3), float64(s.val4)) } // PatchNaNs converts NaN's to zeros. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga62286befb7cde3568ff8c7d14d5079da // func (m *Mat) PatchNaNs() { C.Mat_PatchNaNs(m.p) } // LUT performs a look-up table transform of an array. // // The function LUT fills the output array with values from the look-up table. // Indices of the entries are taken from the input array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gab55b8d062b7f5587720ede032d34156f func LUT(src, wbLUT Mat, dst *Mat) { C.LUT(src.p, wbLUT.p, dst.p) } // Rows returns the number of rows for this Mat. func (m *Mat) Rows() int { return int(C.Mat_Rows(m.p)) } // Cols returns the number of columns for this Mat. func (m *Mat) Cols() int { return int(C.Mat_Cols(m.p)) } // Channels returns the number of channels for this Mat. func (m *Mat) Channels() int { return int(C.Mat_Channels(m.p)) } // Type returns the type for this Mat. func (m *Mat) Type() MatType { return MatType(C.Mat_Type(m.p)) } // Step returns the number of bytes each matrix row occupies. func (m *Mat) Step() int { return int(C.Mat_Step(m.p)) } // GetUCharAt returns a value from a specific row/col // in this Mat expecting it to be of type uchar aka CV_8U. func (m *Mat) GetUCharAt(row int, col int) uint8 { return uint8(C.Mat_GetUChar(m.p, C.int(row), C.int(col))) } // GetUCharAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type uchar aka CV_8U. func (m *Mat) GetUCharAt3(x, y, z int) uint8 { return uint8(C.Mat_GetUChar3(m.p, C.int(x), C.int(y), C.int(z))) } // GetSCharAt returns a value from a specific row/col // in this Mat expecting it to be of type schar aka CV_8S. func (m *Mat) GetSCharAt(row int, col int) int8 { return int8(C.Mat_GetSChar(m.p, C.int(row), C.int(col))) } // GetSCharAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type schar aka CV_8S. func (m *Mat) GetSCharAt3(x, y, z int) int8 { return int8(C.Mat_GetSChar3(m.p, C.int(x), C.int(y), C.int(z))) } // GetShortAt returns a value from a specific row/col // in this Mat expecting it to be of type short aka CV_16S. func (m *Mat) GetShortAt(row int, col int) int16 { return int16(C.Mat_GetShort(m.p, C.int(row), C.int(col))) } // GetShortAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type short aka CV_16S. func (m *Mat) GetShortAt3(x, y, z int) int16 { return int16(C.Mat_GetShort3(m.p, C.int(x), C.int(y), C.int(z))) } // GetIntAt returns a value from a specific row/col // in this Mat expecting it to be of type int aka CV_32S. func (m *Mat) GetIntAt(row int, col int) int32 { return int32(C.Mat_GetInt(m.p, C.int(row), C.int(col))) } // GetIntAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type int aka CV_32S. func (m *Mat) GetIntAt3(x, y, z int) int32 { return int32(C.Mat_GetInt3(m.p, C.int(x), C.int(y), C.int(z))) } // GetFloatAt returns a value from a specific row/col // in this Mat expecting it to be of type float aka CV_32F. func (m *Mat) GetFloatAt(row int, col int) float32 { return float32(C.Mat_GetFloat(m.p, C.int(row), C.int(col))) } // GetFloatAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type float aka CV_32F. func (m *Mat) GetFloatAt3(x, y, z int) float32 { return float32(C.Mat_GetFloat3(m.p, C.int(x), C.int(y), C.int(z))) } // GetDoubleAt returns a value from a specific row/col // in this Mat expecting it to be of type double aka CV_64F. func (m *Mat) GetDoubleAt(row int, col int) float64 { return float64(C.Mat_GetDouble(m.p, C.int(row), C.int(col))) } // GetDoubleAt3 returns a value from a specific x, y, z coordinate location // in this Mat expecting it to be of type double aka CV_64F. func (m *Mat) GetDoubleAt3(x, y, z int) float64 { return float64(C.Mat_GetDouble3(m.p, C.int(x), C.int(y), C.int(z))) } // SetTo sets all or some of the array elements to the specified scalar value. func (m *Mat) SetTo(s Scalar) { sVal := C.struct_Scalar{ val1: C.double(s.Val1), val2: C.double(s.Val2), val3: C.double(s.Val3), val4: C.double(s.Val4), } C.Mat_SetTo(m.p, sVal) } // SetUCharAt sets a value at a specific row/col // in this Mat expecting it to be of type uchar aka CV_8U. func (m *Mat) SetUCharAt(row int, col int, val uint8) { C.Mat_SetUChar(m.p, C.int(row), C.int(col), C.uint8_t(val)) } // SetUCharAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type uchar aka CV_8U. func (m *Mat) SetUCharAt3(x, y, z int, val uint8) { C.Mat_SetUChar3(m.p, C.int(x), C.int(y), C.int(z), C.uint8_t(val)) } // SetSCharAt sets a value at a specific row/col // in this Mat expecting it to be of type schar aka CV_8S. func (m *Mat) SetSCharAt(row int, col int, val int8) { C.Mat_SetSChar(m.p, C.int(row), C.int(col), C.int8_t(val)) } // SetSCharAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type schar aka CV_8S. func (m *Mat) SetSCharAt3(x, y, z int, val int8) { C.Mat_SetSChar3(m.p, C.int(x), C.int(y), C.int(z), C.int8_t(val)) } // SetShortAt sets a value at a specific row/col // in this Mat expecting it to be of type short aka CV_16S. func (m *Mat) SetShortAt(row int, col int, val int16) { C.Mat_SetShort(m.p, C.int(row), C.int(col), C.int16_t(val)) } // SetShortAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type short aka CV_16S. func (m *Mat) SetShortAt3(x, y, z int, val int16) { C.Mat_SetShort3(m.p, C.int(x), C.int(y), C.int(z), C.int16_t(val)) } // SetIntAt sets a value at a specific row/col // in this Mat expecting it to be of type int aka CV_32S. func (m *Mat) SetIntAt(row int, col int, val int32) { C.Mat_SetInt(m.p, C.int(row), C.int(col), C.int32_t(val)) } // SetIntAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type int aka CV_32S. func (m *Mat) SetIntAt3(x, y, z int, val int32) { C.Mat_SetInt3(m.p, C.int(x), C.int(y), C.int(z), C.int32_t(val)) } // SetFloatAt sets a value at a specific row/col // in this Mat expecting it to be of type float aka CV_32F. func (m *Mat) SetFloatAt(row int, col int, val float32) { C.Mat_SetFloat(m.p, C.int(row), C.int(col), C.float(val)) } // SetFloatAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type float aka CV_32F. func (m *Mat) SetFloatAt3(x, y, z int, val float32) { C.Mat_SetFloat3(m.p, C.int(x), C.int(y), C.int(z), C.float(val)) } // SetDoubleAt sets a value at a specific row/col // in this Mat expecting it to be of type double aka CV_64F. func (m *Mat) SetDoubleAt(row int, col int, val float64) { C.Mat_SetDouble(m.p, C.int(row), C.int(col), C.double(val)) } // SetDoubleAt3 sets a value at a specific x, y, z coordinate location // in this Mat expecting it to be of type double aka CV_64F. func (m *Mat) SetDoubleAt3(x, y, z int, val float64) { C.Mat_SetDouble3(m.p, C.int(x), C.int(y), C.int(z), C.double(val)) } // AddUChar adds a uchar value to each element in the Mat. Performs a // mat += val operation. func (m *Mat) AddUChar(val uint8) { C.Mat_AddUChar(m.p, C.uint8_t(val)) } // SubtractUChar subtracts a uchar value from each element in the Mat. Performs a // mat -= val operation. func (m *Mat) SubtractUChar(val uint8) { C.Mat_SubtractUChar(m.p, C.uint8_t(val)) } // MultiplyUChar multiplies each element in the Mat by a uint value. Performs a // mat *= val operation. func (m *Mat) MultiplyUChar(val uint8) { C.Mat_MultiplyUChar(m.p, C.uint8_t(val)) } // DivideUChar divides each element in the Mat by a uint value. Performs a // mat /= val operation. func (m *Mat) DivideUChar(val uint8) { C.Mat_DivideUChar(m.p, C.uint8_t(val)) } // AddFloat adds a float value to each element in the Mat. Performs a // mat += val operation. func (m *Mat) AddFloat(val float32) { C.Mat_AddFloat(m.p, C.float(val)) } // SubtractFloat subtracts a float value from each element in the Mat. Performs a // mat -= val operation. func (m *Mat) SubtractFloat(val float32) { C.Mat_SubtractFloat(m.p, C.float(val)) } // MultiplyFloat multiplies each element in the Mat by a float value. Performs a // mat *= val operation. func (m *Mat) MultiplyFloat(val float32) { C.Mat_MultiplyFloat(m.p, C.float(val)) } // DivideFloat divides each element in the Mat by a float value. Performs a // mat /= val operation. func (m *Mat) DivideFloat(val float32) { C.Mat_DivideFloat(m.p, C.float(val)) } // MultiplyMatrix multiplies matrix (m*x) func (m *Mat) MultiplyMatrix(x Mat) Mat { return newMat(C.Mat_MultiplyMatrix(m.p, x.p)) } // T transpose matrix // https://docs.opencv.org/4.1.2/d3/d63/classcv_1_1Mat.html#aaa428c60ccb6d8ea5de18f63dfac8e11 func (m *Mat) T() Mat { return newMat(C.Mat_T(m.p)) } // AbsDiff calculates the per-element absolute difference between two arrays // or between an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga6fef31bc8c4071cbc114a758a2b79c14 // func AbsDiff(src1, src2 Mat, dst *Mat) { C.Mat_AbsDiff(src1.p, src2.p, dst.p) } // Add calculates the per-element sum of two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga10ac1bfb180e2cfda1701d06c24fdbd6 // func Add(src1, src2 Mat, dst *Mat) { C.Mat_Add(src1.p, src2.p, dst.p) } // AddWeighted calculates the weighted sum of two arrays. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gafafb2513349db3bcff51f54ee5592a19 // func AddWeighted(src1 Mat, alpha float64, src2 Mat, beta float64, gamma float64, dst *Mat) { C.Mat_AddWeighted(src1.p, C.double(alpha), src2.p, C.double(beta), C.double(gamma), dst.p) } // BitwiseAnd computes bitwise conjunction of the two arrays (dst = src1 & src2). // Calculates the per-element bit-wise conjunction of two arrays // or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga60b4d04b251ba5eb1392c34425497e14 // func BitwiseAnd(src1 Mat, src2 Mat, dst *Mat) { C.Mat_BitwiseAnd(src1.p, src2.p, dst.p) } // BitwiseAndWithMask computes bitwise conjunction of the two arrays (dst = src1 & src2). // Calculates the per-element bit-wise conjunction of two arrays // or an array and a scalar. It has an additional parameter for a mask. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga60b4d04b251ba5eb1392c34425497e14 // func BitwiseAndWithMask(src1 Mat, src2 Mat, dst *Mat, mask Mat) { C.Mat_BitwiseAndWithMask(src1.p, src2.p, dst.p, mask.p) } // BitwiseNot inverts every bit of an array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga0002cf8b418479f4cb49a75442baee2f // func BitwiseNot(src1 Mat, dst *Mat) { C.Mat_BitwiseNot(src1.p, dst.p) } // BitwiseNotWithMask inverts every bit of an array. It has an additional parameter for a mask. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga0002cf8b418479f4cb49a75442baee2f // func BitwiseNotWithMask(src1 Mat, dst *Mat, mask Mat) { C.Mat_BitwiseNotWithMask(src1.p, dst.p, mask.p) } // BitwiseOr calculates the per-element bit-wise disjunction of two arrays // or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gab85523db362a4e26ff0c703793a719b4 // func BitwiseOr(src1 Mat, src2 Mat, dst *Mat) { C.Mat_BitwiseOr(src1.p, src2.p, dst.p) } // BitwiseOrWithMask calculates the per-element bit-wise disjunction of two arrays // or an array and a scalar. It has an additional parameter for a mask. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gab85523db362a4e26ff0c703793a719b4 // func BitwiseOrWithMask(src1 Mat, src2 Mat, dst *Mat, mask Mat) { C.Mat_BitwiseOrWithMask(src1.p, src2.p, dst.p, mask.p) } // BitwiseXor calculates the per-element bit-wise "exclusive or" operation // on two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga84b2d8188ce506593dcc3f8cd00e8e2c // func BitwiseXor(src1 Mat, src2 Mat, dst *Mat) { C.Mat_BitwiseXor(src1.p, src2.p, dst.p) } // BitwiseXorWithMask calculates the per-element bit-wise "exclusive or" operation // on two arrays or an array and a scalar. It has an additional parameter for a mask. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga84b2d8188ce506593dcc3f8cd00e8e2c // func BitwiseXorWithMask(src1 Mat, src2 Mat, dst *Mat, mask Mat) { C.Mat_BitwiseXorWithMask(src1.p, src2.p, dst.p, mask.p) } // BatchDistance is a naive nearest neighbor finder. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga4ba778a1c57f83233b1d851c83f5a622 // func BatchDistance(src1 Mat, src2 Mat, dist Mat, dtype MatType, nidx Mat, normType NormType, K int, mask Mat, update int, crosscheck bool) { C.Mat_BatchDistance(src1.p, src2.p, dist.p, C.int(dtype), nidx.p, C.int(normType), C.int(K), mask.p, C.int(update), C.bool(crosscheck)) } // BorderInterpolate computes the source location of an extrapolated pixel. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga247f571aa6244827d3d798f13892da58 // func BorderInterpolate(p int, len int, borderType CovarFlags) int { ret := C.Mat_BorderInterpolate(C.int(p), C.int(len), C.int(borderType)) return int(ret) } // CovarFlags are the covariation flags used by functions such as BorderInterpolate. // // For further details, please see: // https://docs.opencv.org/master/d0/de1/group__core.html#ga719ebd4a73f30f4fab258ab7616d0f0f // type CovarFlags int const ( // CovarScrambled indicates to scramble the results. CovarScrambled CovarFlags = 0 // CovarNormal indicates to use normal covariation. CovarNormal CovarFlags = 1 // CovarUseAvg indicates to use average covariation. CovarUseAvg CovarFlags = 2 // CovarScale indicates to use scaled covariation. CovarScale CovarFlags = 4 // CovarRows indicates to use covariation on rows. CovarRows CovarFlags = 8 // CovarCols indicates to use covariation on columns. CovarCols CovarFlags = 16 ) // CalcCovarMatrix calculates the covariance matrix of a set of vectors. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga017122d912af19d7d0d2cccc2d63819f // func CalcCovarMatrix(samples Mat, covar *Mat, mean *Mat, flags CovarFlags, ctype MatType) { C.Mat_CalcCovarMatrix(samples.p, covar.p, mean.p, C.int(flags), C.int(ctype)) } // CartToPolar calculates the magnitude and angle of 2D vectors. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gac5f92f48ec32cacf5275969c33ee837d // func CartToPolar(x Mat, y Mat, magnitude *Mat, angle *Mat, angleInDegrees bool) { C.Mat_CartToPolar(x.p, y.p, magnitude.p, angle.p, C.bool(angleInDegrees)) } // CheckRange checks every element of an input array for invalid values. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga2bd19d89cae59361416736f87e3c7a64 // func CheckRange(src Mat) bool { return bool(C.Mat_CheckRange(src.p)) } // Compare performs the per-element comparison of two arrays // or an array and scalar value. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga303cfb72acf8cbb36d884650c09a3a97 // func Compare(src1 Mat, src2 Mat, dst *Mat, ct CompareType) { C.Mat_Compare(src1.p, src2.p, dst.p, C.int(ct)) } // CountNonZero counts non-zero array elements. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaa4b89393263bb4d604e0fe5986723914 // func CountNonZero(src Mat) int { return int(C.Mat_CountNonZero(src.p)) } // CompleteSymm copies the lower or the upper half of a square matrix to its another half. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaa9d88dcd0e54b6d1af38d41f2a3e3d25 // func CompleteSymm(m Mat, lowerToUpper bool) { C.Mat_CompleteSymm(m.p, C.bool(lowerToUpper)) } // ConvertScaleAbs scales, calculates absolute values, and converts the result to 8-bit. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga3460e9c9f37b563ab9dd550c4d8c4e7d // func ConvertScaleAbs(src Mat, dst *Mat, alpha float64, beta float64) { C.Mat_ConvertScaleAbs(src.p, dst.p, C.double(alpha), C.double(beta)) } // CopyMakeBorder forms a border around an image (applies padding). // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga2ac1049c2c3dd25c2b41bffe17658a36 // func CopyMakeBorder(src Mat, dst *Mat, top int, bottom int, left int, right int, bt BorderType, value color.RGBA) { cValue := C.struct_Scalar{ val1: C.double(value.B), val2: C.double(value.G), val3: C.double(value.R), val4: C.double(value.A), } C.Mat_CopyMakeBorder(src.p, dst.p, C.int(top), C.int(bottom), C.int(left), C.int(right), C.int(bt), cValue) } // DftFlags represents a DFT or DCT flag. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaf4dde112b483b38175621befedda1f1c // type DftFlags int const ( // DftForward performs forward 1D or 2D dft or dct. DftForward DftFlags = 0 // DftInverse performs an inverse 1D or 2D transform. DftInverse DftFlags = 1 // DftScale scales the result: divide it by the number of array elements. Normally, it is combined with DFT_INVERSE. DftScale DftFlags = 2 // DftRows performs a forward or inverse transform of every individual row of the input matrix. DftRows DftFlags = 4 // DftComplexOutput performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry DftComplexOutput DftFlags = 16 // DftRealOutput performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, // however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with DFT_COMPLEX_OUTPUT flag), // the output is a real array. DftRealOutput DftFlags = 32 // DftComplexInput specifies that input is complex input. If this flag is set, the input must have 2 channels. DftComplexInput DftFlags = 64 // DctInverse performs an inverse 1D or 2D dct transform. DctInverse = DftInverse // DctRows performs a forward or inverse dct transform of every individual row of the input matrix. DctRows = DftRows ) // DCT performs a forward or inverse discrete Cosine transform of 1D or 2D array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga85aad4d668c01fbd64825f589e3696d4 // func DCT(src Mat, dst *Mat, flags DftFlags) { C.Mat_DCT(src.p, dst.p, C.int(flags)) } // Determinant returns the determinant of a square floating-point matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaf802bd9ca3e07b8b6170645ef0611d0c // func Determinant(src Mat) float64 { return float64(C.Mat_Determinant(src.p)) } // DFT performs a forward or inverse Discrete Fourier Transform (DFT) // of a 1D or 2D floating-point array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gadd6cf9baf2b8b704a11b5f04aaf4f39d // func DFT(src Mat, dst *Mat, flags DftFlags) { C.Mat_DFT(src.p, dst.p, C.int(flags)) } // Divide performs the per-element division // on two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga6db555d30115642fedae0cda05604874 // func Divide(src1 Mat, src2 Mat, dst *Mat) { C.Mat_Divide(src1.p, src2.p, dst.p) } // Eigen calculates eigenvalues and eigenvectors of a symmetric matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga9fa0d58657f60eaa6c71f6fbb40456e3 // func Eigen(src Mat, eigenvalues *Mat, eigenvectors *Mat) bool { ret := C.Mat_Eigen(src.p, eigenvalues.p, eigenvectors.p) return bool(ret) } // EigenNonSymmetric calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only). // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaf51987e03cac8d171fbd2b327cf966f6 // func EigenNonSymmetric(src Mat, eigenvalues *Mat, eigenvectors *Mat) { C.Mat_EigenNonSymmetric(src.p, eigenvalues.p, eigenvectors.p) } // Exp calculates the exponent of every array element. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga3e10108e2162c338f1b848af619f39e5 // func Exp(src Mat, dst *Mat) { C.Mat_Exp(src.p, dst.p) } // ExtractChannel extracts a single channel from src (coi is 0-based index). // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gacc6158574aa1f0281878c955bcf35642 // func ExtractChannel(src Mat, dst *Mat, coi int) { C.Mat_ExtractChannel(src.p, dst.p, C.int(coi)) } // FindNonZero returns the list of locations of non-zero pixels. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaed7df59a3539b4cc0fe5c9c8d7586190 // func FindNonZero(src Mat, idx *Mat) { C.Mat_FindNonZero(src.p, idx.p) } // Flip flips a 2D array around horizontal(0), vertical(1), or both axes(-1). // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaca7be533e3dac7feb70fc60635adf441 // func Flip(src Mat, dst *Mat, flipCode int) { C.Mat_Flip(src.p, dst.p, C.int(flipCode)) } // Gemm performs generalized matrix multiplication. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gacb6e64071dffe36434e1e7ee79e7cb35 // func Gemm(src1, src2 Mat, alpha float64, src3 Mat, beta float64, dst *Mat, flags int) { C.Mat_Gemm(src1.p, src2.p, C.double(alpha), src3.p, C.double(beta), dst.p, C.int(flags)) } // GetOptimalDFTSize returns the optimal Discrete Fourier Transform (DFT) size // for a given vector size. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga6577a2e59968936ae02eb2edde5de299 // func GetOptimalDFTSize(vecsize int) int { return int(C.Mat_GetOptimalDFTSize(C.int(vecsize))) } // Hconcat applies horizontal concatenation to given matrices. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaab5ceee39e0580f879df645a872c6bf7 // func Hconcat(src1, src2 Mat, dst *Mat) { C.Mat_Hconcat(src1.p, src2.p, dst.p) } // Vconcat applies vertical concatenation to given matrices. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaab5ceee39e0580f879df645a872c6bf7 // func Vconcat(src1, src2 Mat, dst *Mat) { C.Mat_Vconcat(src1.p, src2.p, dst.p) } // RotateFlag for image rotation // // // For further details please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga6f45d55c0b1cc9d97f5353a7c8a7aac2 type RotateFlag int const ( // Rotate90Clockwise allows to rotate image 90 degrees clockwise Rotate90Clockwise RotateFlag = 0 // Rotate180Clockwise allows to rotate image 180 degrees clockwise Rotate180Clockwise RotateFlag = 1 // Rotate90CounterClockwise allows to rotate 270 degrees clockwise Rotate90CounterClockwise RotateFlag = 2 ) // Rotate rotates a 2D array in multiples of 90 degrees // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga4ad01c0978b0ce64baa246811deeac24 func Rotate(src Mat, dst *Mat, code RotateFlag) { C.Rotate(src.p, dst.p, C.int(code)) } // IDCT calculates the inverse Discrete Cosine Transform of a 1D or 2D array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga77b168d84e564c50228b69730a227ef2 // func IDCT(src Mat, dst *Mat, flags int) { C.Mat_Idct(src.p, dst.p, C.int(flags)) } // IDFT calculates the inverse Discrete Fourier Transform of a 1D or 2D array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaa708aa2d2e57a508f968eb0f69aa5ff1 // func IDFT(src Mat, dst *Mat, flags, nonzeroRows int) { C.Mat_Idft(src.p, dst.p, C.int(flags), C.int(nonzeroRows)) } // InRange checks if array elements lie between the elements of two Mat arrays. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga48af0ab51e36436c5d04340e036ce981 // func InRange(src, lb, ub Mat, dst *Mat) { C.Mat_InRange(src.p, lb.p, ub.p, dst.p) } // InRangeWithScalar checks if array elements lie between the elements of two Scalars // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga48af0ab51e36436c5d04340e036ce981 // func InRangeWithScalar(src Mat, lb, ub Scalar, dst *Mat) { lbVal := C.struct_Scalar{ val1: C.double(lb.Val1), val2: C.double(lb.Val2), val3: C.double(lb.Val3), val4: C.double(lb.Val4), } ubVal := C.struct_Scalar{ val1: C.double(ub.Val1), val2: C.double(ub.Val2), val3: C.double(ub.Val3), val4: C.double(ub.Val4), } C.Mat_InRangeWithScalar(src.p, lbVal, ubVal, dst.p) } // InsertChannel inserts a single channel to dst (coi is 0-based index) // (it replaces channel i with another in dst). // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga1d4bd886d35b00ec0b764cb4ce6eb515 // func InsertChannel(src Mat, dst *Mat, coi int) { C.Mat_InsertChannel(src.p, dst.p, C.int(coi)) } // Invert finds the inverse or pseudo-inverse of a matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gad278044679d4ecf20f7622cc151aaaa2 // func Invert(src Mat, dst *Mat, flags int) float64 { ret := C.Mat_Invert(src.p, dst.p, C.int(flags)) return float64(ret) } // KMeansFlags for kmeans center selection // // For further details, please see: // https://docs.opencv.org/master/d0/de1/group__core.html#ga276000efe55ee2756e0c471c7b270949 type KMeansFlags int const ( // KMeansRandomCenters selects random initial centers in each attempt. KMeansRandomCenters KMeansFlags = 0 // KMeansPPCenters uses kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007]. KMeansPPCenters KMeansFlags = 1 // KMeansUseInitialLabels uses the user-supplied lables during the first (and possibly the only) attempt // instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random // centers. Use one of KMEANS_*_CENTERS flag to specify the exact method. KMeansUseInitialLabels KMeansFlags = 2 ) // KMeans finds centers of clusters and groups input samples around the clusters. // // For further details, please see: // https://docs.opencv.org/master/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88 // func KMeans(data Mat, k int, bestLabels *Mat, criteria TermCriteria, attempts int, flags KMeansFlags, centers *Mat) float64 { ret := C.KMeans(data.p, C.int(k), bestLabels.p, criteria.p, C.int(attempts), C.int(flags), centers.p) return float64(ret) } // KMeansPoints finds centers of clusters and groups input samples around the clusters. // // For further details, please see: // https://docs.opencv.org/master/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88 // func KMeansPoints(points []image.Point, k int, bestLabels *Mat, criteria TermCriteria, attempts int, flags KMeansFlags, centers *Mat) float64 { cPoints := toCPoints(points) ret := C.KMeansPoints(cPoints, C.int(k), bestLabels.p, criteria.p, C.int(attempts), C.int(flags), centers.p) return float64(ret) } // Log calculates the natural logarithm of every array element. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga937ecdce4679a77168730830a955bea7 // func Log(src Mat, dst *Mat) { C.Mat_Log(src.p, dst.p) } // Magnitude calculates the magnitude of 2D vectors. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga6d3b097586bca4409873d64a90fe64c3 // func Magnitude(x, y Mat, magnitude *Mat) { C.Mat_Magnitude(x.p, y.p, magnitude.p) } // Max calculates per-element maximum of two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gacc40fa15eac0fb83f8ca70b7cc0b588d // func Max(src1, src2 Mat, dst *Mat) { C.Mat_Max(src1.p, src2.p, dst.p) } // MeanStdDev calculates a mean and standard deviation of array elements. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga846c858f4004d59493d7c6a4354b301d // func MeanStdDev(src Mat, dst *Mat, dstStdDev *Mat) { C.Mat_MeanStdDev(src.p, dst.p, dstStdDev.p) } // Merge creates one multi-channel array out of several single-channel ones. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga7d7b4d6c6ee504b30a20b1680029c7b4 // func Merge(mv []Mat, dst *Mat) { cMatArray := make([]C.Mat, len(mv)) for i, r := range mv { cMatArray[i] = r.p } cMats := C.struct_Mats{ mats: (*C.Mat)(&cMatArray[0]), length: C.int(len(mv)), } C.Mat_Merge(cMats, dst.p) } // Min calculates per-element minimum of two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga9af368f182ee76d0463d0d8d5330b764 // func Min(src1, src2 Mat, dst *Mat) { C.Mat_Min(src1.p, src2.p, dst.p) } // MinMaxIdx finds the global minimum and maximum in an array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga7622c466c628a75d9ed008b42250a73f // func MinMaxIdx(input Mat) (minVal, maxVal float32, minIdx, maxIdx int) { var cMinVal C.double var cMaxVal C.double var cMinIdx C.int var cMaxIdx C.int C.Mat_MinMaxIdx(input.p, &cMinVal, &cMaxVal, &cMinIdx, &cMaxIdx) return float32(cMinVal), float32(cMaxVal), int(minIdx), int(maxIdx) } // MinMaxLoc finds the global minimum and maximum in an array. // // For further details, please see: // https://docs.opencv.org/trunk/d2/de8/group__core__array.html#gab473bf2eb6d14ff97e89b355dac20707 // func MinMaxLoc(input Mat) (minVal, maxVal float32, minLoc, maxLoc image.Point) { var cMinVal C.double var cMaxVal C.double var cMinLoc C.struct_Point var cMaxLoc C.struct_Point C.Mat_MinMaxLoc(input.p, &cMinVal, &cMaxVal, &cMinLoc, &cMaxLoc) minLoc = image.Pt(int(cMinLoc.x), int(cMinLoc.y)) maxLoc = image.Pt(int(cMaxLoc.x), int(cMaxLoc.y)) return float32(cMinVal), float32(cMaxVal), minLoc, maxLoc } // Copies specified channels from input arrays to the specified channels of output arrays. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga51d768c270a1cdd3497255017c4504be // func MixChannels(src []Mat, dst []Mat, fromTo []int) { cSrcArray := make([]C.Mat, len(src)) for i, r := range src { cSrcArray[i] = r.p } cSrcMats := C.struct_Mats{ mats: (*C.Mat)(&cSrcArray[0]), length: C.int(len(src)), } cDstArray := make([]C.Mat, len(dst)) for i, r := range dst { cDstArray[i] = r.p } cDstMats := C.struct_Mats{ mats: (*C.Mat)(&cDstArray[0]), length: C.int(len(dst)), } cFromToArray := make([]C.int, len(fromTo)) for i, ft := range fromTo { cFromToArray[i] = C.int(ft) } cFromToIntVector := C.IntVector{ val: (*C.int)(&cFromToArray[0]), length: C.int(len(fromTo)), } C.Mat_MixChannels(cSrcMats, cDstMats, cFromToIntVector) for i := C.int(0); i < cDstMats.length; i++ { dst[i].p = C.Mats_get(cDstMats, i) } } //Mulspectrums performs the per-element multiplication of two Fourier spectrums. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga3ab38646463c59bf0ce962a9d51db64f // func MulSpectrums(a Mat, b Mat, dst *Mat, flags DftFlags) { C.Mat_MulSpectrums(a.p, b.p, dst.p, C.int(flags)) } // Multiply calculates the per-element scaled product of two arrays. // Both input arrays must be of the same size and the same type. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga979d898a58d7f61c53003e162e7ad89f // func Multiply(src1 Mat, src2 Mat, dst *Mat) { C.Mat_Multiply(src1.p, src2.p, dst.p) } // MultiplyWithParams calculates the per-element scaled product of two arrays. // Both input arrays must be of the same size and the same type. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga979d898a58d7f61c53003e162e7ad89f // func MultiplyWithParams(src1 Mat, src2 Mat, dst *Mat, scale float64, dtype MatType) { C.Mat_MultiplyWithParams(src1.p, src2.p, dst.p, C.double(scale), C.int(dtype)) } // NormType for normalization operations. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gad12cefbcb5291cf958a85b4b67b6149f // type NormType int const ( // NormInf indicates use infinite normalization. NormInf NormType = 1 // NormL1 indicates use L1 normalization. NormL1 NormType = 2 // NormL2 indicates use L2 normalization. NormL2 NormType = 4 // NormL2Sqr indicates use L2 squared normalization. NormL2Sqr NormType = 5 // NormHamming indicates use Hamming normalization. NormHamming NormType = 6 // NormHamming2 indicates use Hamming 2-bit normalization. NormHamming2 NormType = 7 // NormTypeMask indicates use type mask for normalization. NormTypeMask NormType = 7 // NormRelative indicates use relative normalization. NormRelative NormType = 8 // NormMinMax indicates use min/max normalization. NormMinMax NormType = 32 ) // Normalize normalizes the norm or value range of an array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga87eef7ee3970f86906d69a92cbf064bd // func Normalize(src Mat, dst *Mat, alpha float64, beta float64, typ NormType) { C.Mat_Normalize(src.p, dst.p, C.double(alpha), C.double(beta), C.int(typ)) } // Norm calculates the absolute norm of an array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga7c331fb8dd951707e184ef4e3f21dd33 // func Norm(src1 Mat, normType NormType) float64 { return float64(C.Norm(src1.p, C.int(normType))) } // Norm calculates the absolute difference/relative norm of two arrays. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga7c331fb8dd951707e184ef4e3f21dd33 // func NormWithMats(src1 Mat, src2 Mat, normType NormType) float64 { return float64(C.NormWithMats(src1.p, src2.p, C.int(normType))) } // PerspectiveTransform performs the perspective matrix transformation of vectors. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gad327659ac03e5fd6894b90025e6900a7 // func PerspectiveTransform(src Mat, dst *Mat, tm Mat) { C.Mat_PerspectiveTransform(src.p, dst.p, tm.p) } // TermCriteriaType for TermCriteria. // // For further details, please see: // https://docs.opencv.org/master/d9/d5d/classcv_1_1TermCriteria.html#a56fecdc291ccaba8aad27d67ccf72c57 // type TermCriteriaType int const ( // Count is the maximum number of iterations or elements to compute. Count TermCriteriaType = 1 // MaxIter is the maximum number of iterations or elements to compute. MaxIter TermCriteriaType = 1 // EPS is the desired accuracy or change in parameters at which the // iterative algorithm stops. EPS TermCriteriaType = 2 ) type SolveDecompositionFlags int const ( // Gaussian elimination with the optimal pivot element chosen. SolveDecompositionLu SolveDecompositionFlags = 0 // Singular value decomposition (SVD) method. The system can be over-defined and/or the matrix src1 can be singular. SolveDecompositionSvd SolveDecompositionFlags = 1 // Eigenvalue decomposition. The matrix src1 must be symmetrical. SolveDecompositionEing SolveDecompositionFlags = 2 // Cholesky LL^T factorization. The matrix src1 must be symmetrical and positively defined. SolveDecompositionCholesky SolveDecompositionFlags = 3 // QR factorization. The system can be over-defined and/or the matrix src1 can be singular. SolveDecompositionQr SolveDecompositionFlags = 4 // While all the previous flags are mutually exclusive, this flag can be used together with any of the previous. // It means that the normal equations 𝚜𝚛𝚌𝟷^T⋅𝚜𝚛𝚌𝟷⋅𝚍𝚜𝚝=𝚜𝚛𝚌𝟷^T𝚜𝚛𝚌𝟸 are solved instead of the original system // 𝚜𝚛𝚌𝟷⋅𝚍𝚜𝚝=𝚜𝚛𝚌𝟸. SolveDecompositionNormal SolveDecompositionFlags = 5 ) // Solve solves one or more linear systems or least-squares problems. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga12b43690dbd31fed96f213eefead2373 // func Solve(src1 Mat, src2 Mat, dst *Mat, flags SolveDecompositionFlags) bool { return bool(C.Mat_Solve(src1.p, src2.p, dst.p, C.int(flags))) } // SolveCubic finds the real roots of a cubic equation. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga1c3b0b925b085b6e96931ee309e6a1da // func SolveCubic(coeffs Mat, roots *Mat) int { return int(C.Mat_SolveCubic(coeffs.p, roots.p)) } // SolvePoly finds the real or complex roots of a polynomial equation. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gac2f5e953016fabcdf793d762f4ec5dce // func SolvePoly(coeffs Mat, roots *Mat, maxIters int) float64 { return float64(C.Mat_SolvePoly(coeffs.p, roots.p, C.int(maxIters))) } type ReduceTypes int const ( // The output is the sum of all rows/columns of the matrix. ReduceSum ReduceTypes = 0 // The output is the mean vector of all rows/columns of the matrix. ReduceAvg ReduceTypes = 1 // The output is the maximum (column/row-wise) of all rows/columns of the matrix. ReduceMax ReduceTypes = 2 // The output is the minimum (column/row-wise) of all rows/columns of the matrix. ReduceMin ReduceTypes = 3 ) // Reduce reduces a matrix to a vector. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga4b78072a303f29d9031d56e5638da78e // func Reduce(src Mat, dst *Mat, dim int, rType ReduceTypes, dType MatType) { C.Mat_Reduce(src.p, dst.p, C.int(dim), C.int(rType), C.int(dType)) } // Repeat fills the output array with repeated copies of the input array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga496c3860f3ac44c40b48811333cfda2d // func Repeat(src Mat, nY int, nX int, dst *Mat) { C.Mat_Repeat(src.p, C.int(nY), C.int(nX), dst.p) } // Calculates the sum of a scaled array and another array. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga9e0845db4135f55dcf20227402f00d98 // func ScaleAdd(src1 Mat, alpha float64, src2 Mat, dst *Mat) { C.Mat_ScaleAdd(src1.p, C.double(alpha), src2.p, dst.p) } // SetIdentity initializes a scaled identity matrix. // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga388d7575224a4a277ceb98ccaa327c99 // func SetIdentity(src Mat, scalar float64) { C.Mat_SetIdentity(src.p, C.double(scalar)) } type SortFlags int const ( // Each matrix row is sorted independently SortEveryRow SortFlags = 0 // Each matrix column is sorted independently; this flag and the previous one are mutually exclusive. SortEveryColumn SortFlags = 1 // Each matrix row is sorted in the ascending order. SortAscending SortFlags = 0 // Each matrix row is sorted in the descending order; this flag and the previous one are also mutually exclusive. SortDescending SortFlags = 16 ) // Sort sorts each row or each column of a matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga45dd56da289494ce874be2324856898f // func Sort(src Mat, dst *Mat, flags SortFlags) { C.Mat_Sort(src.p, dst.p, C.int(flags)) } // SortIdx sorts each row or each column of a matrix. // Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gadf35157cbf97f3cb85a545380e383506 // func SortIdx(src Mat, dst *Mat, flags SortFlags) { C.Mat_SortIdx(src.p, dst.p, C.int(flags)) } // Split creates an array of single channel images from a multi-channel image // Created images should be closed manualy to avoid memory leaks. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga0547c7fed86152d7e9d0096029c8518a // func Split(src Mat) (mv []Mat) { cMats := C.struct_Mats{} C.Mat_Split(src.p, &(cMats)) defer C.Mats_Close(cMats) mv = make([]Mat, cMats.length) for i := C.int(0); i < cMats.length; i++ { mv[i].p = C.Mats_get(cMats, i) addMatToProfile(mv[i].p) } return } // Subtract calculates the per-element subtraction of two arrays or an array and a scalar. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaa0f00d98b4b5edeaeb7b8333b2de353b // func Subtract(src1 Mat, src2 Mat, dst *Mat) { C.Mat_Subtract(src1.p, src2.p, dst.p) } // Trace returns the trace of a matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga3419ac19c7dcd2be4bd552a23e147dd8 // func Trace(src Mat) Scalar { s := C.Mat_Trace(src.p) return NewScalar(float64(s.val1), float64(s.val2), float64(s.val3), float64(s.val4)) } // Transform performs the matrix transformation of every array element. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga393164aa54bb9169ce0a8cc44e08ff22 // func Transform(src Mat, dst *Mat, tm Mat) { C.Mat_Transform(src.p, dst.p, tm.p) } // Transpose transposes a matrix. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga46630ed6c0ea6254a35f447289bd7404 // func Transpose(src Mat, dst *Mat) { C.Mat_Transpose(src.p, dst.p) } // Pow raises every array element to a power. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#gaf0d056b5bd1dc92500d6f6cf6bac41ef // func Pow(src Mat, power float64, dst *Mat) { C.Mat_Pow(src.p, C.double(power), dst.p) } // PolatToCart calculates x and y coordinates of 2D vectors from their magnitude and angle. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga581ff9d44201de2dd1b40a50db93d665 // func PolarToCart(magnitude Mat, degree Mat, x *Mat, y *Mat, angleInDegrees bool) { C.Mat_PolarToCart(magnitude.p, degree.p, x.p, y.p, C.bool(angleInDegrees)) } // Phase calculates the rotation angle of 2D vectors. // // For further details, please see: // https://docs.opencv.org/master/d2/de8/group__core__array.html#ga9db9ca9b4d81c3bde5677b8f64dc0137 // func Phase(x, y Mat, angle *Mat, angleInDegrees bool) { C.Mat_Phase(x.p, y.p, angle.p, C.bool(angleInDegrees)) } // TermCriteria is the criteria for iterative algorithms. // // For further details, please see: // https://docs.opencv.org/master/d9/d5d/classcv_1_1TermCriteria.html // type TermCriteria struct { p C.TermCriteria } // NewTermCriteria returns a new TermCriteria. func NewTermCriteria(typ TermCriteriaType, maxCount int, epsilon float64) TermCriteria { return TermCriteria{p: C.TermCriteria_New(C.int(typ), C.int(maxCount), C.double(epsilon))} } // Scalar is a 4-element vector widely used in OpenCV to pass pixel values. // // For further details, please see: // http://docs.opencv.org/master/d1/da0/classcv_1_1Scalar__.html // type Scalar struct { Val1 float64 Val2 float64 Val3 float64 Val4 float64 } // NewScalar returns a new Scalar. These are usually colors typically being in BGR order. func NewScalar(v1 float64, v2 float64, v3 float64, v4 float64) Scalar { s := Scalar{Val1: v1, Val2: v2, Val3: v3, Val4: v4} return s } // KeyPoint is data structure for salient point detectors. // // For further details, please see: // https://docs.opencv.org/master/d2/d29/classcv_1_1KeyPoint.html // type KeyPoint struct { X, Y float64 Size, Angle, Response float64 Octave, ClassID int } // DMatch is data structure for matching keypoint descriptors. // // For further details, please see: // https://docs.opencv.org/master/d4/de0/classcv_1_1DMatch.html#a546ddb9a87898f06e510e015a6de596e // type DMatch struct { QueryIdx int TrainIdx int ImgIdx int Distance float64 } // Vecb is a generic vector of bytes. type Vecb []uint8 // GetVecbAt returns a vector of bytes. Its size corresponds to the number // of channels of the Mat. func (m *Mat) GetVecbAt(row int, col int) Vecb { ch := m.Channels() v := make(Vecb, ch) for c := 0; c < ch; c++ { v[c] = m.GetUCharAt(row, col*ch+c) } return v } // Vecf is a generic vector of floats. type Vecf []float32 // GetVecfAt returns a vector of floats. Its size corresponds to the number of // channels of the Mat. func (m *Mat) GetVecfAt(row int, col int) Vecf { ch := m.Channels() v := make(Vecf, ch) for c := 0; c < ch; c++ { v[c] = m.GetFloatAt(row, col*ch+c) } return v } // Vecd is a generic vector of float64/doubles. type Vecd []float64 // GetVecdAt returns a vector of float64s. Its size corresponds to the number // of channels of the Mat. func (m *Mat) GetVecdAt(row int, col int) Vecd { ch := m.Channels() v := make(Vecd, ch) for c := 0; c < ch; c++ { v[c] = m.GetDoubleAt(row, col*ch+c) } return v } // Veci is a generic vector of integers. type Veci []int32 // GetVeciAt returns a vector of integers. Its size corresponds to the number // of channels of the Mat. func (m *Mat) GetVeciAt(row int, col int) Veci { ch := m.Channels() v := make(Veci, ch) for c := 0; c < ch; c++ { v[c] = m.GetIntAt(row, col*ch+c) } return v } // GetTickCount returns the number of ticks. // // For further details, please see: // https://docs.opencv.org/master/db/de0/group__core__utils.html#gae73f58000611a1af25dd36d496bf4487 // func GetTickCount() float64 { return float64(C.GetCVTickCount()) } // GetTickFrequency returns the number of ticks per second. // // For further details, please see: // https://docs.opencv.org/master/db/de0/group__core__utils.html#ga705441a9ef01f47acdc55d87fbe5090c // func GetTickFrequency() float64 { return float64(C.GetTickFrequency()) } func toByteArray(b []byte) (*C.struct_ByteArray, error) { if len(b) == 0 { return nil, ErrEmptyByteSlice } return &C.struct_ByteArray{ data: (*C.char)(unsafe.Pointer(&b[0])), length: C.int(len(b)), }, nil } func toGoBytes(b C.struct_ByteArray) []byte { return C.GoBytes(unsafe.Pointer(b.data), b.length) } // Converts CStrings to a slice of Go strings even when the C strings are not contiguous in memory func toGoStrings(strs C.CStrings) []string { length := int(strs.length) tmpslice := (*[1 << 20]*C.char)(unsafe.Pointer(strs.strs))[:length:length] gostrings := make([]string, length) for i, s := range tmpslice { gostrings[i] = C.GoString(s) } return gostrings } func toRectangles(ret C.Rects) []image.Rectangle { cArray := ret.rects length := int(ret.length) hdr := reflect.SliceHeader{ Data: uintptr(unsafe.Pointer(cArray)), Len: length, Cap: length, } s := *(*[]C.Rect)(unsafe.Pointer(&hdr)) rects := make([]image.Rectangle, length) for i, r := range s { rects[i] = image.Rect(int(r.x), int(r.y), int(r.x+r.width), int(r.y+r.height)) } return rects } func toRect(rect C.Rect) image.Rectangle { return image.Rect(int(rect.x), int(rect.y), int(rect.x+rect.width), int(rect.y+rect.height)) } func toCPoints(points []image.Point) C.struct_Points { cPointSlice := make([]C.struct_Point, len(points)) for i, point := range points { cPointSlice[i] = C.struct_Point{ x: C.int(point.X), y: C.int(point.Y), } } return C.struct_Points{ points: (*C.Point)(&cPointSlice[0]), length: C.int(len(points)), } } func toCPoints2f(points []Point2f) C.struct_Points2f { cPointSlice := make([]C.struct_Point2f, len(points)) for i, point := range points { cPointSlice[i] = C.struct_Point2f{ x: C.float(point.X), y: C.float(point.Y), } } return C.struct_Points2f{ points: (*C.Point2f)(&cPointSlice[0]), length: C.int(len(points)), } } func toCStrings(strs []string) C.struct_CStrings { cStringsSlice := make([]*C.char, len(strs)) for i, s := range strs { cStringsSlice[i] = C.CString(s) } return C.struct_CStrings{ strs: (**C.char)(&cStringsSlice[0]), length: C.int(len(strs)), } } // RowRange creates a matrix header for the specified row span. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#aa6542193430356ad631a9beabc624107 // func (m *Mat) RowRange(start, end int) Mat { return newMat(C.Mat_rowRange(m.p, C.int(start), C.int(end))) } // ColRange creates a matrix header for the specified column span. // // For further details, please see: // https://docs.opencv.org/master/d3/d63/classcv_1_1Mat.html#aadc8f9210fe4dec50513746c246fa8d9 // func (m *Mat) ColRange(start, end int) Mat { return newMat(C.Mat_colRange(m.p, C.int(start), C.int(end))) }