#include "imgproc.h" double ArcLength(Contour curve, bool is_closed) { std::vector pts; for (size_t i = 0; i < curve.length; i++) { pts.push_back(cv::Point(curve.points[i].x, curve.points[i].y)); } return cv::arcLength(pts, is_closed); } Contour ApproxPolyDP(Contour curve, double epsilon, bool closed) { std::vector curvePts; for (size_t i = 0; i < curve.length; i++) { curvePts.push_back(cv::Point(curve.points[i].x, curve.points[i].y)); } std::vector approxCurvePts; cv::approxPolyDP(curvePts, approxCurvePts, epsilon, closed); int length = approxCurvePts.size(); Point* points = new Point[length]; for (size_t i = 0; i < length; i++) { points[i] = (Point){approxCurvePts[i].x, approxCurvePts[i].y}; } return (Contour){points, length}; } void CvtColor(Mat src, Mat dst, int code) { cv::cvtColor(*src, *dst, code); } void EqualizeHist(Mat src, Mat dst) { cv::equalizeHist(*src, *dst); } void CalcHist(struct Mats mats, IntVector chans, Mat mask, Mat hist, IntVector sz, FloatVector rng, bool acc) { std::vector images; for (int i = 0; i < mats.length; ++i) { images.push_back(*mats.mats[i]); } std::vector channels; for (int i = 0, *v = chans.val; i < chans.length; ++v, ++i) { channels.push_back(*v); } std::vector histSize; for (int i = 0, *v = sz.val; i < sz.length; ++v, ++i) { histSize.push_back(*v); } std::vector ranges; float* f; int i; for (i = 0, f = rng.val; i < rng.length; ++f, ++i) { ranges.push_back(*f); } cv::calcHist(images, channels, *mask, *hist, histSize, ranges, acc); } void CalcBackProject(struct Mats mats, IntVector chans, Mat hist, Mat backProject, FloatVector rng, bool uniform){ std::vector images; for (int i = 0; i < mats.length; ++i) { images.push_back(*mats.mats[i]); } std::vector channels; for (int i = 0, *v = chans.val; i < chans.length; ++v, ++i) { channels.push_back(*v); } std::vector ranges; float* f; int i; for (i = 0, f = rng.val; i < rng.length; ++f, ++i) { ranges.push_back(*f); } cv::calcBackProject(images, channels, *hist, *backProject, ranges, uniform); } double CompareHist(Mat hist1, Mat hist2, int method) { return cv::compareHist(*hist1, *hist2, method); } struct RotatedRect FitEllipse(Points points) { Point *rpts = new Point[points.length]; std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); Point pt = {points.points[i].x, points.points[i].y}; rpts[i] = pt; } cv::RotatedRect bRect = cv::fitEllipse(pts); Rect r = {bRect.boundingRect().x, bRect.boundingRect().y, bRect.boundingRect().width, bRect.boundingRect().height}; Point centrpt = {int(lroundf(bRect.center.x)), int(lroundf(bRect.center.y))}; Size szsz = {int(lroundf(bRect.size.width)), int(lroundf(bRect.size.height))}; RotatedRect rotRect = {(Contour){rpts, 4}, r, centrpt, szsz, bRect.angle}; return rotRect; } void ConvexHull(Contour points, Mat hull, bool clockwise, bool returnPoints) { std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); } cv::convexHull(pts, *hull, clockwise, returnPoints); } void ConvexityDefects(Contour points, Mat hull, Mat result) { std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); } cv::convexityDefects(pts, *hull, *result); } void BilateralFilter(Mat src, Mat dst, int d, double sc, double ss) { cv::bilateralFilter(*src, *dst, d, sc, ss); } void Blur(Mat src, Mat dst, Size ps) { cv::Size sz(ps.width, ps.height); cv::blur(*src, *dst, sz); } void BoxFilter(Mat src, Mat dst, int ddepth, Size ps) { cv::Size sz(ps.width, ps.height); cv::boxFilter(*src, *dst, ddepth, sz); } void SqBoxFilter(Mat src, Mat dst, int ddepth, Size ps) { cv::Size sz(ps.width, ps.height); cv::sqrBoxFilter(*src, *dst, ddepth, sz); } void Dilate(Mat src, Mat dst, Mat kernel) { cv::dilate(*src, *dst, *kernel); } void DistanceTransform(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) { cv::distanceTransform(*src, *dst, *labels, distanceType, maskSize, labelType); } void Erode(Mat src, Mat dst, Mat kernel) { cv::erode(*src, *dst, *kernel); } void MatchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask) { cv::matchTemplate(*image, *templ, *result, method, *mask); } struct Moment Moments(Mat src, bool binaryImage) { cv::Moments m = cv::moments(*src, binaryImage); Moment mom = {m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03, m.mu20, m.mu11, m.mu02, m.mu30, m.mu21, m.mu12, m.mu03, m.nu20, m.nu11, m.nu02, m.nu30, m.nu21, m.nu12, m.nu03 }; return mom; } void PyrDown(Mat src, Mat dst, Size size, int borderType) { cv::Size cvSize(size.width, size.height); cv::pyrDown(*src, *dst, cvSize, borderType); } void PyrUp(Mat src, Mat dst, Size size, int borderType) { cv::Size cvSize(size.width, size.height); cv::pyrUp(*src, *dst, cvSize, borderType); } struct Rect BoundingRect(Contour con) { std::vector pts; for (size_t i = 0; i < con.length; i++) { pts.push_back(cv::Point(con.points[i].x, con.points[i].y)); } cv::Rect bRect = cv::boundingRect(pts); Rect r = {bRect.x, bRect.y, bRect.width, bRect.height}; return r; } void BoxPoints(RotatedRect rect, Mat boxPts){ cv::Point2f centerPt(rect.center.x , rect.center.y); cv::Size2f rSize(rect.size.width, rect.size.height); cv::RotatedRect rotatedRectangle(centerPt, rSize, rect.angle); cv::boxPoints(rotatedRectangle, *boxPts); } double ContourArea(Contour con) { std::vector pts; for (size_t i = 0; i < con.length; i++) { pts.push_back(cv::Point(con.points[i].x, con.points[i].y)); } return cv::contourArea(pts); } struct RotatedRect MinAreaRect(Points points){ std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); } cv::RotatedRect cvrect = cv::minAreaRect(pts); Point* rpts = new Point[4]; cv::Point2f* pts4 = new cv::Point2f[4]; cvrect.points(pts4); for (size_t j = 0; j < 4; j++) { Point pt = {int(lroundf(pts4[j].x)), int(lroundf(pts4[j].y))}; rpts[j] = pt; } delete[] pts4; cv::Rect bRect = cvrect.boundingRect(); Rect r = {bRect.x, bRect.y, bRect.width, bRect.height}; Point centrpt = {int(lroundf(cvrect.center.x)), int(lroundf(cvrect.center.y))}; Size szsz = {int(lroundf(cvrect.size.width)), int(lroundf(cvrect.size.height))}; RotatedRect retrect = {(Contour){rpts, 4}, r, centrpt, szsz, cvrect.angle}; return retrect; } void MinEnclosingCircle(Points points, Point2f* center, float* radius){ std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); } cv::Point2f center2f; cv::minEnclosingCircle(pts, center2f, *radius); center->x = center2f.x; center->y = center2f.y; } struct Contours FindContours(Mat src, int mode, int method) { std::vector > contours; cv::findContours(*src, contours, mode, method); Contour* points = new Contour[contours.size()]; for (size_t i = 0; i < contours.size(); i++) { Point* pts = new Point[contours[i].size()]; for (size_t j = 0; j < contours[i].size(); j++) { Point pt = {contours[i][j].x, contours[i][j].y}; pts[j] = pt; } points[i] = (Contour){pts, (int)contours[i].size()}; } Contours cons = {points, (int)contours.size()}; return cons; } int ConnectedComponents(Mat src, Mat labels, int connectivity, int ltype, int ccltype){ return cv::connectedComponents(*src, *labels, connectivity, ltype, ccltype); } int ConnectedComponentsWithStats(Mat src, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype){ return cv::connectedComponentsWithStats(*src, *labels, *stats, *centroids, connectivity, ltype, ccltype); } Mat GetStructuringElement(int shape, Size ksize) { cv::Size sz(ksize.width, ksize.height); return new cv::Mat(cv::getStructuringElement(shape, sz)); } Scalar MorphologyDefaultBorderValue(){ cv::Scalar cs = cv::morphologyDefaultBorderValue(); return (Scalar){cs[0],cs[1],cs[2],cs[3]}; } void MorphologyEx(Mat src, Mat dst, int op, Mat kernel) { cv::morphologyEx(*src, *dst, op, *kernel); } void MorphologyExWithParams(Mat src, Mat dst, int op, Mat kernel, Point pt, int iterations, int borderType) { cv::Point pt1(pt.x, pt.y); cv::morphologyEx(*src, *dst, op, *kernel, pt1, iterations, borderType); } void GaussianBlur(Mat src, Mat dst, Size ps, double sX, double sY, int bt) { cv::Size sz(ps.width, ps.height); cv::GaussianBlur(*src, *dst, sz, sX, sY, bt); } void Laplacian(Mat src, Mat dst, int dDepth, int kSize, double scale, double delta, int borderType) { cv::Laplacian(*src, *dst, dDepth, kSize, scale, delta, borderType); } void Scharr(Mat src, Mat dst, int dDepth, int dx, int dy, double scale, double delta, int borderType) { cv::Scharr(*src, *dst, dDepth, dx, dy, scale, delta, borderType); } void MedianBlur(Mat src, Mat dst, int ksize) { cv::medianBlur(*src, *dst, ksize); } void Canny(Mat src, Mat edges, double t1, double t2) { cv::Canny(*src, *edges, t1, t2); } void CornerSubPix(Mat img, Mat corners, Size winSize, Size zeroZone, TermCriteria criteria) { cv::Size wsz(winSize.width, winSize.height); cv::Size zsz(zeroZone.width, zeroZone.height); cv::cornerSubPix(*img, *corners, wsz, zsz, *criteria); } void GoodFeaturesToTrack(Mat img, Mat corners, int maxCorners, double quality, double minDist) { cv::goodFeaturesToTrack(*img, *corners, maxCorners, quality, minDist); } void GrabCut(Mat img, Mat mask, Rect r, Mat bgdModel, Mat fgdModel, int iterCount, int mode) { cv::Rect cvRect = cv::Rect(r.x, r.y, r.width, r.height); cv::grabCut(*img, *mask, cvRect, *bgdModel, *fgdModel, iterCount, mode); } void HoughCircles(Mat src, Mat circles, int method, double dp, double minDist) { cv::HoughCircles(*src, *circles, method, dp, minDist); } void HoughCirclesWithParams(Mat src, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) { cv::HoughCircles(*src, *circles, method, dp, minDist, param1, param2, minRadius, maxRadius); } void HoughLines(Mat src, Mat lines, double rho, double theta, int threshold) { cv::HoughLines(*src, *lines, rho, theta, threshold); } void HoughLinesP(Mat src, Mat lines, double rho, double theta, int threshold) { cv::HoughLinesP(*src, *lines, rho, theta, threshold); } void HoughLinesPWithParams(Mat src, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) { cv::HoughLinesP(*src, *lines, rho, theta, threshold, minLineLength, maxLineGap); } void HoughLinesPointSet(Mat points, Mat lines, int linesMax, int threshold, double minRho, double maxRho, double rhoStep, double minTheta, double maxTheta, double thetaStep) { cv::HoughLinesPointSet(*points, *lines, linesMax, threshold, minRho, maxRho, rhoStep, minTheta, maxTheta, thetaStep ); } void Integral(Mat src, Mat sum, Mat sqsum, Mat tilted) { cv::integral(*src, *sum, *sqsum, *tilted); } void Threshold(Mat src, Mat dst, double thresh, double maxvalue, int typ) { cv::threshold(*src, *dst, thresh, maxvalue, typ); } void AdaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double c) { cv::adaptiveThreshold(*src, *dst, maxValue, adaptiveMethod, thresholdType, blockSize, c); } void ArrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness) { cv::Point p1(pt1.x, pt1.y); cv::Point p2(pt2.x, pt2.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::arrowedLine(*img, p1, p2, c, thickness); } bool ClipLine(Size imgSize, Point pt1, Point pt2) { cv::Size sz(imgSize.width, imgSize.height); cv::Point p1(pt1.x, pt1.y); cv::Point p2(pt2.x, pt2.y); return cv::clipLine(sz, p1, p2); } void Circle(Mat img, Point center, int radius, Scalar color, int thickness) { cv::Point p1(center.x, center.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::circle(*img, p1, radius, c, thickness); } void Ellipse(Mat img, Point center, Point axes, double angle, double startAngle, double endAngle, Scalar color, int thickness) { cv::Point p1(center.x, center.y); cv::Point p2(axes.x, axes.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::ellipse(*img, p1, p2, angle, startAngle, endAngle, c, thickness); } void Line(Mat img, Point pt1, Point pt2, Scalar color, int thickness) { cv::Point p1(pt1.x, pt1.y); cv::Point p2(pt2.x, pt2.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::line(*img, p1, p2, c, thickness); } void Rectangle(Mat img, Rect r, Scalar color, int thickness) { cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::rectangle( *img, cv::Point(r.x, r.y), cv::Point(r.x + r.width, r.y + r.height), c, thickness, cv::LINE_AA ); } void FillPoly(Mat img, Contours points, Scalar color) { std::vector > pts; for (size_t i = 0; i < points.length; i++) { Contour contour = points.contours[i]; std::vector cntr; for (size_t i = 0; i < contour.length; i++) { cntr.push_back(cv::Point(contour.points[i].x, contour.points[i].y)); } pts.push_back(cntr); } cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::fillPoly(*img, pts, c); } struct Size GetTextSize(const char* text, int fontFace, double fontScale, int thickness) { cv::Size sz = cv::getTextSize(text, fontFace, fontScale, thickness, NULL); Size size = {sz.width, sz.height}; return size; } void PutText(Mat img, const char* text, Point org, int fontFace, double fontScale, Scalar color, int thickness) { cv::Point pt(org.x, org.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::putText(*img, text, pt, fontFace, fontScale, c, thickness); } void PutTextWithParams(Mat img, const char* text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, bool bottomLeftOrigin) { cv::Point pt(org.x, org.y); cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::putText(*img, text, pt, fontFace, fontScale, c, thickness, lineType, bottomLeftOrigin); } void Resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interp) { cv::Size sz(dsize.width, dsize.height); cv::resize(*src, *dst, sz, fx, fy, interp); } void GetRectSubPix(Mat src, Size patchSize, Point center, Mat dst) { cv::Size sz(patchSize.width, patchSize.height); cv::Point pt(center.x, center.y); cv::getRectSubPix(*src, sz, pt, *dst); } Mat GetRotationMatrix2D(Point center, double angle, double scale) { cv::Point pt(center.x, center.y); return new cv::Mat(cv::getRotationMatrix2D(pt, angle, scale)); } void WarpAffine(Mat src, Mat dst, Mat m, Size dsize) { cv::Size sz(dsize.width, dsize.height); cv::warpAffine(*src, *dst, *m, sz); } void WarpAffineWithParams(Mat src, Mat dst, Mat rot_mat, Size dsize, int flags, int borderMode, Scalar borderValue) { cv::Size sz(dsize.width, dsize.height); cv::Scalar c = cv::Scalar(borderValue.val1, borderValue.val2, borderValue.val3, borderValue.val4); cv::warpAffine(*src, *dst, *rot_mat, sz, flags, borderMode, c); } void WarpPerspective(Mat src, Mat dst, Mat m, Size dsize) { cv::Size sz(dsize.width, dsize.height); cv::warpPerspective(*src, *dst, *m, sz); } void Watershed(Mat image, Mat markers) { cv::watershed(*image, *markers); } void ApplyColorMap(Mat src, Mat dst, int colormap) { cv::applyColorMap(*src, *dst, colormap); } void ApplyCustomColorMap(Mat src, Mat dst, Mat colormap) { cv::applyColorMap(*src, *dst, *colormap); } Mat GetPerspectiveTransform(Contour src, Contour dst) { std::vector src_pts; for (size_t i = 0; i < src.length; i++) { src_pts.push_back(cv::Point2f(src.points[i].x, src.points[i].y)); } std::vector dst_pts; for (size_t i = 0; i < dst.length; i++) { dst_pts.push_back(cv::Point2f(dst.points[i].x, dst.points[i].y)); } return new cv::Mat(cv::getPerspectiveTransform(src_pts, dst_pts)); } void DrawContours(Mat src, Contours contours, int contourIdx, Scalar color, int thickness) { std::vector > cntrs; for (size_t i = 0; i < contours.length; i++) { Contour contour = contours.contours[i]; std::vector cntr; for (size_t i = 0; i < contour.length; i++) { cntr.push_back(cv::Point(contour.points[i].x, contour.points[i].y)); } cntrs.push_back(cntr); } cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4); cv::drawContours(*src, cntrs, contourIdx, c, thickness); } void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) { cv::Sobel(*src, *dst, ddepth, dx, dy, ksize, scale, delta, borderType); } void SpatialGradient(Mat src, Mat dx, Mat dy, int ksize, int borderType) { cv::spatialGradient(*src, *dx, *dy, ksize, borderType); } void Remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) { cv::Scalar c = cv::Scalar(borderValue.val1, borderValue.val2, borderValue.val3, borderValue.val4); cv::remap(*src, *dst, *map1, *map2, interpolation, borderMode, c); } void Filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) { cv::Point anchorPt(anchor.x, anchor.y); cv::filter2D(*src, *dst, ddepth, *kernel, anchorPt, delta, borderType); } void SepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) { cv::Point anchorPt(anchor.x, anchor.y); cv::sepFilter2D(*src, *dst, ddepth, *kernelX, *kernelY, anchorPt, delta, borderType); } void LogPolar(Mat src, Mat dst, Point center, double m, int flags) { cv::Point2f centerPt(center.x, center.y); cv::logPolar(*src, *dst, centerPt, m, flags); } void FitLine(Contour points, Mat line, int distType, double param, double reps, double aeps) { std::vector pts; for (size_t i = 0; i < points.length; i++) { pts.push_back(cv::Point(points.points[i].x, points.points[i].y)); } cv::fitLine(pts, *line, distType, param, reps, aeps); } void LinearPolar(Mat src, Mat dst, Point center, double maxRadius, int flags) { cv::Point2f centerPt(center.x, center.y); cv::linearPolar(*src, *dst, centerPt, maxRadius, flags); } CLAHE CLAHE_Create() { return new cv::Ptr(cv::createCLAHE()); } CLAHE CLAHE_CreateWithParams(double clipLimit, Size tileGridSize) { cv::Size sz(tileGridSize.width, tileGridSize.height); return new cv::Ptr(cv::createCLAHE(clipLimit, sz)); } void CLAHE_Close(CLAHE c) { delete c; } void CLAHE_Apply(CLAHE c, Mat src, Mat dst) { (*c)->apply(*src, *dst); } void InvertAffineTransform(Mat src, Mat dst) { cv::invertAffineTransform(*src, *dst); }