robocar-simulator/vendor/golang.org/x/image/tiff/writer.go
Cyrille Nofficial 3cd3d89b60 upgrade code for new simulator version
* add new rotation axis
 * resize image if necessary
 * add debug logs
2021-10-17 19:10:24 +02:00

439 lines
12 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tiff
import (
"bytes"
"compress/zlib"
"encoding/binary"
"image"
"io"
"sort"
)
// The TIFF format allows to choose the order of the different elements freely.
// The basic structure of a TIFF file written by this package is:
//
// 1. Header (8 bytes).
// 2. Image data.
// 3. Image File Directory (IFD).
// 4. "Pointer area" for larger entries in the IFD.
// We only write little-endian TIFF files.
var enc = binary.LittleEndian
// An ifdEntry is a single entry in an Image File Directory.
// A value of type dtRational is composed of two 32-bit values,
// thus data contains two uints (numerator and denominator) for a single number.
type ifdEntry struct {
tag int
datatype int
data []uint32
}
func (e ifdEntry) putData(p []byte) {
for _, d := range e.data {
switch e.datatype {
case dtByte, dtASCII:
p[0] = byte(d)
p = p[1:]
case dtShort:
enc.PutUint16(p, uint16(d))
p = p[2:]
case dtLong, dtRational:
enc.PutUint32(p, uint32(d))
p = p[4:]
}
}
}
type byTag []ifdEntry
func (d byTag) Len() int { return len(d) }
func (d byTag) Less(i, j int) bool { return d[i].tag < d[j].tag }
func (d byTag) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
func encodeGray(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
if !predictor {
return writePix(w, pix, dy, dx, stride)
}
buf := make([]byte, dx)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx
off := 0
var v0 uint8
for i := min; i < max; i++ {
v1 := pix[i]
buf[off] = v1 - v0
v0 = v1
off++
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeGray16(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
buf := make([]byte, dx*2)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*2
off := 0
var v0 uint16
for i := min; i < max; i += 2 {
// An image.Gray16's Pix is in big-endian order.
v1 := uint16(pix[i])<<8 | uint16(pix[i+1])
if predictor {
v0, v1 = v1, v1-v0
}
// We only write little-endian TIFF files.
buf[off+0] = byte(v1)
buf[off+1] = byte(v1 >> 8)
off += 2
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
if !predictor {
return writePix(w, pix, dy, dx*4, stride)
}
buf := make([]byte, dx*4)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*4
off := 0
var r0, g0, b0, a0 uint8
for i := min; i < max; i += 4 {
r1, g1, b1, a1 := pix[i+0], pix[i+1], pix[i+2], pix[i+3]
buf[off+0] = r1 - r0
buf[off+1] = g1 - g0
buf[off+2] = b1 - b0
buf[off+3] = a1 - a0
off += 4
r0, g0, b0, a0 = r1, g1, b1, a1
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encodeRGBA64(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
buf := make([]byte, dx*8)
for y := 0; y < dy; y++ {
min := y*stride + 0
max := y*stride + dx*8
off := 0
var r0, g0, b0, a0 uint16
for i := min; i < max; i += 8 {
// An image.RGBA64's Pix is in big-endian order.
r1 := uint16(pix[i+0])<<8 | uint16(pix[i+1])
g1 := uint16(pix[i+2])<<8 | uint16(pix[i+3])
b1 := uint16(pix[i+4])<<8 | uint16(pix[i+5])
a1 := uint16(pix[i+6])<<8 | uint16(pix[i+7])
if predictor {
r0, r1 = r1, r1-r0
g0, g1 = g1, g1-g0
b0, b1 = b1, b1-b0
a0, a1 = a1, a1-a0
}
// We only write little-endian TIFF files.
buf[off+0] = byte(r1)
buf[off+1] = byte(r1 >> 8)
buf[off+2] = byte(g1)
buf[off+3] = byte(g1 >> 8)
buf[off+4] = byte(b1)
buf[off+5] = byte(b1 >> 8)
buf[off+6] = byte(a1)
buf[off+7] = byte(a1 >> 8)
off += 8
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
func encode(w io.Writer, m image.Image, predictor bool) error {
bounds := m.Bounds()
buf := make([]byte, 4*bounds.Dx())
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
off := 0
if predictor {
var r0, g0, b0, a0 uint8
for x := bounds.Min.X; x < bounds.Max.X; x++ {
r, g, b, a := m.At(x, y).RGBA()
r1 := uint8(r >> 8)
g1 := uint8(g >> 8)
b1 := uint8(b >> 8)
a1 := uint8(a >> 8)
buf[off+0] = r1 - r0
buf[off+1] = g1 - g0
buf[off+2] = b1 - b0
buf[off+3] = a1 - a0
off += 4
r0, g0, b0, a0 = r1, g1, b1, a1
}
} else {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
r, g, b, a := m.At(x, y).RGBA()
buf[off+0] = uint8(r >> 8)
buf[off+1] = uint8(g >> 8)
buf[off+2] = uint8(b >> 8)
buf[off+3] = uint8(a >> 8)
off += 4
}
}
if _, err := w.Write(buf); err != nil {
return err
}
}
return nil
}
// writePix writes the internal byte array of an image to w. It is less general
// but much faster then encode. writePix is used when pix directly
// corresponds to one of the TIFF image types.
func writePix(w io.Writer, pix []byte, nrows, length, stride int) error {
if length == stride {
_, err := w.Write(pix[:nrows*length])
return err
}
for ; nrows > 0; nrows-- {
if _, err := w.Write(pix[:length]); err != nil {
return err
}
pix = pix[stride:]
}
return nil
}
func writeIFD(w io.Writer, ifdOffset int, d []ifdEntry) error {
var buf [ifdLen]byte
// Make space for "pointer area" containing IFD entry data
// longer than 4 bytes.
parea := make([]byte, 1024)
pstart := ifdOffset + ifdLen*len(d) + 6
var o int // Current offset in parea.
// The IFD has to be written with the tags in ascending order.
sort.Sort(byTag(d))
// Write the number of entries in this IFD.
if err := binary.Write(w, enc, uint16(len(d))); err != nil {
return err
}
for _, ent := range d {
enc.PutUint16(buf[0:2], uint16(ent.tag))
enc.PutUint16(buf[2:4], uint16(ent.datatype))
count := uint32(len(ent.data))
if ent.datatype == dtRational {
count /= 2
}
enc.PutUint32(buf[4:8], count)
datalen := int(count * lengths[ent.datatype])
if datalen <= 4 {
ent.putData(buf[8:12])
} else {
if (o + datalen) > len(parea) {
newlen := len(parea) + 1024
for (o + datalen) > newlen {
newlen += 1024
}
newarea := make([]byte, newlen)
copy(newarea, parea)
parea = newarea
}
ent.putData(parea[o : o+datalen])
enc.PutUint32(buf[8:12], uint32(pstart+o))
o += datalen
}
if _, err := w.Write(buf[:]); err != nil {
return err
}
}
// The IFD ends with the offset of the next IFD in the file,
// or zero if it is the last one (page 14).
if err := binary.Write(w, enc, uint32(0)); err != nil {
return err
}
_, err := w.Write(parea[:o])
return err
}
// Options are the encoding parameters.
type Options struct {
// Compression is the type of compression used.
Compression CompressionType
// Predictor determines whether a differencing predictor is used;
// if true, instead of each pixel's color, the color difference to the
// preceding one is saved. This improves the compression for certain
// types of images and compressors. For example, it works well for
// photos with Deflate compression.
Predictor bool
}
// Encode writes the image m to w. opt determines the options used for
// encoding, such as the compression type. If opt is nil, an uncompressed
// image is written.
func Encode(w io.Writer, m image.Image, opt *Options) error {
d := m.Bounds().Size()
compression := uint32(cNone)
predictor := false
if opt != nil {
compression = opt.Compression.specValue()
// The predictor field is only used with LZW. See page 64 of the spec.
predictor = opt.Predictor && compression == cLZW
}
_, err := io.WriteString(w, leHeader)
if err != nil {
return err
}
// Compressed data is written into a buffer first, so that we
// know the compressed size.
var buf bytes.Buffer
// dst holds the destination for the pixel data of the image --
// either w or a writer to buf.
var dst io.Writer
// imageLen is the length of the pixel data in bytes.
// The offset of the IFD is imageLen + 8 header bytes.
var imageLen int
switch compression {
case cNone:
dst = w
// Write IFD offset before outputting pixel data.
switch m.(type) {
case *image.Paletted:
imageLen = d.X * d.Y * 1
case *image.Gray:
imageLen = d.X * d.Y * 1
case *image.Gray16:
imageLen = d.X * d.Y * 2
case *image.RGBA64:
imageLen = d.X * d.Y * 8
case *image.NRGBA64:
imageLen = d.X * d.Y * 8
default:
imageLen = d.X * d.Y * 4
}
err = binary.Write(w, enc, uint32(imageLen+8))
if err != nil {
return err
}
case cDeflate:
dst = zlib.NewWriter(&buf)
}
pr := uint32(prNone)
photometricInterpretation := uint32(pRGB)
samplesPerPixel := uint32(4)
bitsPerSample := []uint32{8, 8, 8, 8}
extraSamples := uint32(0)
colorMap := []uint32{}
if predictor {
pr = prHorizontal
}
switch m := m.(type) {
case *image.Paletted:
photometricInterpretation = pPaletted
samplesPerPixel = 1
bitsPerSample = []uint32{8}
colorMap = make([]uint32, 256*3)
for i := 0; i < 256 && i < len(m.Palette); i++ {
r, g, b, _ := m.Palette[i].RGBA()
colorMap[i+0*256] = uint32(r)
colorMap[i+1*256] = uint32(g)
colorMap[i+2*256] = uint32(b)
}
err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.Gray:
photometricInterpretation = pBlackIsZero
samplesPerPixel = 1
bitsPerSample = []uint32{8}
err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.Gray16:
photometricInterpretation = pBlackIsZero
samplesPerPixel = 1
bitsPerSample = []uint32{16}
err = encodeGray16(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.NRGBA:
extraSamples = 2 // Unassociated alpha.
err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.NRGBA64:
extraSamples = 2 // Unassociated alpha.
bitsPerSample = []uint32{16, 16, 16, 16}
err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.RGBA:
extraSamples = 1 // Associated alpha.
err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
case *image.RGBA64:
extraSamples = 1 // Associated alpha.
bitsPerSample = []uint32{16, 16, 16, 16}
err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
default:
extraSamples = 1 // Associated alpha.
err = encode(dst, m, predictor)
}
if err != nil {
return err
}
if compression != cNone {
if err = dst.(io.Closer).Close(); err != nil {
return err
}
imageLen = buf.Len()
if err = binary.Write(w, enc, uint32(imageLen+8)); err != nil {
return err
}
if _, err = buf.WriteTo(w); err != nil {
return err
}
}
ifd := []ifdEntry{
{tImageWidth, dtShort, []uint32{uint32(d.X)}},
{tImageLength, dtShort, []uint32{uint32(d.Y)}},
{tBitsPerSample, dtShort, bitsPerSample},
{tCompression, dtShort, []uint32{compression}},
{tPhotometricInterpretation, dtShort, []uint32{photometricInterpretation}},
{tStripOffsets, dtLong, []uint32{8}},
{tSamplesPerPixel, dtShort, []uint32{samplesPerPixel}},
{tRowsPerStrip, dtShort, []uint32{uint32(d.Y)}},
{tStripByteCounts, dtLong, []uint32{uint32(imageLen)}},
// There is currently no support for storing the image
// resolution, so give a bogus value of 72x72 dpi.
{tXResolution, dtRational, []uint32{72, 1}},
{tYResolution, dtRational, []uint32{72, 1}},
{tResolutionUnit, dtShort, []uint32{resPerInch}},
}
if pr != prNone {
ifd = append(ifd, ifdEntry{tPredictor, dtShort, []uint32{pr}})
}
if len(colorMap) != 0 {
ifd = append(ifd, ifdEntry{tColorMap, dtShort, colorMap})
}
if extraSamples > 0 {
ifd = append(ifd, ifdEntry{tExtraSamples, dtShort, []uint32{extraSamples}})
}
return writeIFD(w, imageLen+8, ifd)
}