#include "video.h" BackgroundSubtractorMOG2 BackgroundSubtractorMOG2_Create() { return new cv::Ptr(cv::createBackgroundSubtractorMOG2()); } BackgroundSubtractorMOG2 BackgroundSubtractorMOG2_CreateWithParams(int history, double varThreshold, bool detectShadows) { return new cv::Ptr(cv::createBackgroundSubtractorMOG2(history,varThreshold,detectShadows)); } BackgroundSubtractorKNN BackgroundSubtractorKNN_Create() { return new cv::Ptr(cv::createBackgroundSubtractorKNN()); } BackgroundSubtractorKNN BackgroundSubtractorKNN_CreateWithParams(int history, double dist2Threshold, bool detectShadows) { return new cv::Ptr(cv::createBackgroundSubtractorKNN(history,dist2Threshold,detectShadows)); } void BackgroundSubtractorMOG2_Close(BackgroundSubtractorMOG2 b) { delete b; } void BackgroundSubtractorMOG2_Apply(BackgroundSubtractorMOG2 b, Mat src, Mat dst) { (*b)->apply(*src, *dst); } void BackgroundSubtractorKNN_Close(BackgroundSubtractorKNN k) { delete k; } void BackgroundSubtractorKNN_Apply(BackgroundSubtractorKNN k, Mat src, Mat dst) { (*k)->apply(*src, *dst); } void CalcOpticalFlowFarneback(Mat prevImg, Mat nextImg, Mat flow, double scale, int levels, int winsize, int iterations, int polyN, double polySigma, int flags) { cv::calcOpticalFlowFarneback(*prevImg, *nextImg, *flow, scale, levels, winsize, iterations, polyN, polySigma, flags); } void CalcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status, Mat err) { cv::calcOpticalFlowPyrLK(*prevImg, *nextImg, *prevPts, *nextPts, *status, *err); } void CalcOpticalFlowPyrLKWithParams(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status, Mat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold){ cv::Size sz(winSize.width, winSize.height); cv::calcOpticalFlowPyrLK(*prevImg, *nextImg, *prevPts, *nextPts, *status, *err, sz, maxLevel, *criteria, flags, minEigThreshold); } double FindTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize){ return cv::findTransformECC(*templateImage, *inputImage, *warpMatrix, motionType, *criteria, *inputMask, gaussFiltSize); } bool Tracker_Init(Tracker self, Mat image, Rect boundingBox) { cv::Rect bb(boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height); (*self)->init(*image, bb); return true; } bool Tracker_Update(Tracker self, Mat image, Rect* boundingBox) { cv::Rect bb; bool ret = (*self)->update(*image, bb); boundingBox->x = int(bb.x); boundingBox->y = int(bb.y); boundingBox->width = int(bb.width); boundingBox->height = int(bb.height); return ret; } TrackerMIL TrackerMIL_Create() { return new cv::Ptr(cv::TrackerMIL::create()); } void TrackerMIL_Close(TrackerMIL self) { delete self; } KalmanFilter KalmanFilter_New(int dynamParams, int measureParams) { return new cv::KalmanFilter(dynamParams, measureParams, 0, CV_32F); } KalmanFilter KalmanFilter_NewWithParams(int dynamParams, int measureParams, int controlParams, int type) { return new cv::KalmanFilter(dynamParams, measureParams, controlParams, type); } void KalmanFilter_Init(KalmanFilter kf, int dynamParams, int measureParams) { kf->init(dynamParams, measureParams, 0, CV_32F); } void KalmanFilter_InitWithParams(KalmanFilter kf, int dynamParams, int measureParams, int controlParams, int type) { kf->init(dynamParams, measureParams, controlParams, type); } void KalmanFilter_Close(KalmanFilter kf) { delete kf; } Mat KalmanFilter_Predict(KalmanFilter kf) { return new cv::Mat(kf->predict()); } Mat KalmanFilter_PredictWithParams(KalmanFilter kf, Mat control) { return new cv::Mat(kf->predict(*control)); } Mat KalmanFilter_Correct(KalmanFilter kf, Mat measurement) { return new cv::Mat(kf->correct(*measurement)); } Mat KalmanFilter_GetStatePre(KalmanFilter kf) { return new cv::Mat(kf->statePre); } Mat KalmanFilter_GetStatePost(KalmanFilter kf) { return new cv::Mat(kf->statePost); } Mat KalmanFilter_GetTransitionMatrix(KalmanFilter kf) { return new cv::Mat(kf->transitionMatrix); } Mat KalmanFilter_GetControlMatrix(KalmanFilter kf) { return new cv::Mat(kf->controlMatrix); } Mat KalmanFilter_GetMeasurementMatrix(KalmanFilter kf) { return new cv::Mat(kf->measurementMatrix); } Mat KalmanFilter_GetProcessNoiseCov(KalmanFilter kf) { return new cv::Mat(kf->processNoiseCov); } Mat KalmanFilter_GetMeasurementNoiseCov(KalmanFilter kf) { return new cv::Mat(kf->measurementNoiseCov); } Mat KalmanFilter_GetErrorCovPre(KalmanFilter kf) { return new cv::Mat(kf->errorCovPre); } Mat KalmanFilter_GetGain(KalmanFilter kf) { return new cv::Mat(kf->gain); } Mat KalmanFilter_GetErrorCovPost(KalmanFilter kf) { return new cv::Mat(kf->errorCovPost); } Mat KalmanFilter_GetTemp1(KalmanFilter kf) { return new cv::Mat(kf->temp1); } Mat KalmanFilter_GetTemp2(KalmanFilter kf) { return new cv::Mat(kf->temp2); } Mat KalmanFilter_GetTemp3(KalmanFilter kf) { return new cv::Mat(kf->temp3); } Mat KalmanFilter_GetTemp4(KalmanFilter kf) { return new cv::Mat(kf->temp4); } Mat KalmanFilter_GetTemp5(KalmanFilter kf) { return new cv::Mat(kf->temp5); } void KalmanFilter_SetStatePre(KalmanFilter kf, Mat statePre) { kf->statePre = *statePre; } void KalmanFilter_SetStatePost(KalmanFilter kf, Mat statePost) { kf->statePost = *statePost; } void KalmanFilter_SetTransitionMatrix(KalmanFilter kf, Mat transitionMatrix) { kf->transitionMatrix = *transitionMatrix; } void KalmanFilter_SetControlMatrix(KalmanFilter kf, Mat controlMatrix) { kf->controlMatrix = *controlMatrix; } void KalmanFilter_SetMeasurementMatrix(KalmanFilter kf, Mat measurementMatrix) { kf->measurementMatrix = *measurementMatrix; } void KalmanFilter_SetProcessNoiseCov(KalmanFilter kf, Mat processNoiseCov) { kf->processNoiseCov = *processNoiseCov; } void KalmanFilter_SetMeasurementNoiseCov(KalmanFilter kf, Mat measurementNoiseCov) { kf->measurementNoiseCov = *measurementNoiseCov; } void KalmanFilter_SetErrorCovPre(KalmanFilter kf, Mat errorCovPre) { kf->errorCovPre = *errorCovPre; } void KalmanFilter_SetGain(KalmanFilter kf, Mat gain) { kf->gain = *gain; } void KalmanFilter_SetErrorCovPost(KalmanFilter kf, Mat errorCovPost) { kf->errorCovPost = *errorCovPost; }