package gocv /* #include #include "video.h" */ import "C" import ( "image" "unsafe" ) /** cv::OPTFLOW_USE_INITIAL_FLOW = 4, cv::OPTFLOW_LK_GET_MIN_EIGENVALS = 8, cv::OPTFLOW_FARNEBACK_GAUSSIAN = 256 For further details, please see: https://docs.opencv.org/master/dc/d6b/group__video__track.html#gga2c6cc144c9eee043575d5b311ac8af08a9d4430ac75199af0cf6fcdefba30eafe */ const ( OptflowUseInitialFlow = 4 OptflowLkGetMinEigenvals = 8 OptflowFarnebackGaussian = 256 ) /** cv::MOTION_TRANSLATION = 0, cv::MOTION_EUCLIDEAN = 1, cv::MOTION_AFFINE = 2, cv::MOTION_HOMOGRAPHY = 3 For further details, please see: https://docs.opencv.org/4.x/dc/d6b/group__video__track.html#ggaaedb1f94e6b143cef163622c531afd88a01106d6d20122b782ff25eaeffe9a5be */ const ( MotionTranslation = 0 MotionEuclidean = 1 MotionAffine = 2 MotionHomography = 3 ) // BackgroundSubtractorMOG2 is a wrapper around the cv::BackgroundSubtractorMOG2. type BackgroundSubtractorMOG2 struct { // C.BackgroundSubtractorMOG2 p unsafe.Pointer } // NewBackgroundSubtractorMOG2 returns a new BackgroundSubtractor algorithm // of type MOG2. MOG2 is a Gaussian Mixture-based Background/Foreground // Segmentation Algorithm. // // For further details, please see: // https://docs.opencv.org/master/de/de1/group__video__motion.html#ga2beb2dee7a073809ccec60f145b6b29c // https://docs.opencv.org/master/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html // func NewBackgroundSubtractorMOG2() BackgroundSubtractorMOG2 { return BackgroundSubtractorMOG2{p: unsafe.Pointer(C.BackgroundSubtractorMOG2_Create())} } // NewBackgroundSubtractorMOG2WithParams returns a new BackgroundSubtractor algorithm // of type MOG2 with customized parameters. MOG2 is a Gaussian Mixture-based Background/Foreground // Segmentation Algorithm. // // For further details, please see: // https://docs.opencv.org/master/de/de1/group__video__motion.html#ga2beb2dee7a073809ccec60f145b6b29c // https://docs.opencv.org/master/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html // func NewBackgroundSubtractorMOG2WithParams(history int, varThreshold float64, detectShadows bool) BackgroundSubtractorMOG2 { return BackgroundSubtractorMOG2{p: unsafe.Pointer(C.BackgroundSubtractorMOG2_CreateWithParams(C.int(history), C.double(varThreshold), C.bool(detectShadows)))} } // Close BackgroundSubtractorMOG2. func (b *BackgroundSubtractorMOG2) Close() error { C.BackgroundSubtractorMOG2_Close((C.BackgroundSubtractorMOG2)(b.p)) b.p = nil return nil } // Apply computes a foreground mask using the current BackgroundSubtractorMOG2. // // For further details, please see: // https://docs.opencv.org/master/d7/df6/classcv_1_1BackgroundSubtractor.html#aa735e76f7069b3fa9c3f32395f9ccd21 // func (b *BackgroundSubtractorMOG2) Apply(src Mat, dst *Mat) { C.BackgroundSubtractorMOG2_Apply((C.BackgroundSubtractorMOG2)(b.p), src.p, dst.p) return } // BackgroundSubtractorKNN is a wrapper around the cv::BackgroundSubtractorKNN. type BackgroundSubtractorKNN struct { // C.BackgroundSubtractorKNN p unsafe.Pointer } // NewBackgroundSubtractorKNN returns a new BackgroundSubtractor algorithm // of type KNN. K-Nearest Neighbors (KNN) uses a Background/Foreground // Segmentation Algorithm // // For further details, please see: // https://docs.opencv.org/master/de/de1/group__video__motion.html#gac9be925771f805b6fdb614ec2292006d // https://docs.opencv.org/master/db/d88/classcv_1_1BackgroundSubtractorKNN.html // func NewBackgroundSubtractorKNN() BackgroundSubtractorKNN { return BackgroundSubtractorKNN{p: unsafe.Pointer(C.BackgroundSubtractorKNN_Create())} } // NewBackgroundSubtractorKNNWithParams returns a new BackgroundSubtractor algorithm // of type KNN with customized parameters. K-Nearest Neighbors (KNN) uses a Background/Foreground // Segmentation Algorithm // // For further details, please see: // https://docs.opencv.org/master/de/de1/group__video__motion.html#gac9be925771f805b6fdb614ec2292006d // https://docs.opencv.org/master/db/d88/classcv_1_1BackgroundSubtractorKNN.html // func NewBackgroundSubtractorKNNWithParams(history int, dist2Threshold float64, detectShadows bool) BackgroundSubtractorKNN { return BackgroundSubtractorKNN{p: unsafe.Pointer(C.BackgroundSubtractorKNN_CreateWithParams(C.int(history), C.double(dist2Threshold), C.bool(detectShadows)))} } // Close BackgroundSubtractorKNN. func (k *BackgroundSubtractorKNN) Close() error { C.BackgroundSubtractorKNN_Close((C.BackgroundSubtractorKNN)(k.p)) k.p = nil return nil } // Apply computes a foreground mask using the current BackgroundSubtractorKNN. // // For further details, please see: // https://docs.opencv.org/master/d7/df6/classcv_1_1BackgroundSubtractor.html#aa735e76f7069b3fa9c3f32395f9ccd21 // func (k *BackgroundSubtractorKNN) Apply(src Mat, dst *Mat) { C.BackgroundSubtractorKNN_Apply((C.BackgroundSubtractorKNN)(k.p), src.p, dst.p) return } // CalcOpticalFlowFarneback computes a dense optical flow using // Gunnar Farneback's algorithm. // // For further details, please see: // https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga5d10ebbd59fe09c5f650289ec0ece5af // func CalcOpticalFlowFarneback(prevImg Mat, nextImg Mat, flow *Mat, pyrScale float64, levels int, winsize int, iterations int, polyN int, polySigma float64, flags int) { C.CalcOpticalFlowFarneback(prevImg.p, nextImg.p, flow.p, C.double(pyrScale), C.int(levels), C.int(winsize), C.int(iterations), C.int(polyN), C.double(polySigma), C.int(flags)) return } // CalcOpticalFlowPyrLK calculates an optical flow for a sparse feature set using // the iterative Lucas-Kanade method with pyramids. // // For further details, please see: // https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323 // func CalcOpticalFlowPyrLK(prevImg Mat, nextImg Mat, prevPts Mat, nextPts Mat, status *Mat, err *Mat) { C.CalcOpticalFlowPyrLK(prevImg.p, nextImg.p, prevPts.p, nextPts.p, status.p, err.p) return } // CalcOpticalFlowPyrLKWithParams calculates an optical flow for a sparse feature set using // the iterative Lucas-Kanade method with pyramids. // // For further details, please see: // https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323 // func CalcOpticalFlowPyrLKWithParams(prevImg Mat, nextImg Mat, prevPts Mat, nextPts Mat, status *Mat, err *Mat, winSize image.Point, maxLevel int, criteria TermCriteria, flags int, minEigThreshold float64) { winSz := C.struct_Size{ width: C.int(winSize.X), height: C.int(winSize.Y), } C.CalcOpticalFlowPyrLKWithParams(prevImg.p, nextImg.p, prevPts.p, nextPts.p, status.p, err.p, winSz, C.int(maxLevel), criteria.p, C.int(flags), C.double(minEigThreshold)) return } // FindTransformECC finds the geometric transform (warp) between two images in terms of the ECC criterion. // // For futther details, please see: // https://docs.opencv.org/4.x/dc/d6b/group__video__track.html#ga1aa357007eaec11e9ed03500ecbcbe47 // func FindTransformECC(templateImage Mat, inputImage Mat, warpMatrix *Mat, motionType int, criteria TermCriteria, inputMask Mat, gaussFiltSize int) float64 { return float64(C.FindTransformECC(templateImage.p, inputImage.p, warpMatrix.p, C.int(motionType), criteria.p, inputMask.p, C.int(gaussFiltSize))) } // Tracker is the base interface for object tracking. // // see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html // type Tracker interface { // Close closes, as Trackers need to be Closed manually. // Close() error // Init initializes the tracker with a known bounding box that surrounded the target. // Note: this can only be called once. If you lose the object, you have to Close() the instance, // create a new one, and call Init() on it again. // // see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html#a4d285747589b1bdd16d2e4f00c3255dc // Init(image Mat, boundingBox image.Rectangle) bool // Update updates the tracker, returns a new bounding box and a boolean determining whether the tracker lost the target. // // see: https://docs.opencv.org/master/d0/d0a/classcv_1_1Tracker.html#a549159bd0553e6a8de356f3866df1f18 // Update(image Mat) (image.Rectangle, bool) } func trackerInit(trk C.Tracker, img Mat, boundingBox image.Rectangle) bool { cBox := C.struct_Rect{ x: C.int(boundingBox.Min.X), y: C.int(boundingBox.Min.Y), width: C.int(boundingBox.Size().X), height: C.int(boundingBox.Size().Y), } ret := C.Tracker_Init(trk, C.Mat(img.Ptr()), cBox) return bool(ret) } func trackerUpdate(trk C.Tracker, img Mat) (image.Rectangle, bool) { cBox := C.struct_Rect{} ret := C.Tracker_Update(trk, C.Mat(img.Ptr()), &cBox) rect := image.Rect(int(cBox.x), int(cBox.y), int(cBox.x+cBox.width), int(cBox.y+cBox.height)) return rect, bool(ret) } // TrackerMIL is a Tracker that uses the MIL algorithm. MIL trains a classifier in an online manner // to separate the object from the background. // Multiple Instance Learning avoids the drift problem for a robust tracking. // // For further details, please see: // https://docs.opencv.org/master/d0/d26/classcv_1_1TrackerMIL.html // type TrackerMIL struct { p C.TrackerMIL } // NewTrackerMIL returns a new TrackerMIL. func NewTrackerMIL() Tracker { return TrackerMIL{p: C.TrackerMIL_Create()} } // Close closes the TrackerMIL. func (trk TrackerMIL) Close() error { C.TrackerMIL_Close(trk.p) trk.p = nil return nil } // Init initializes the TrackerMIL. func (trk TrackerMIL) Init(img Mat, boundingBox image.Rectangle) bool { return trackerInit(C.Tracker(trk.p), img, boundingBox) } // Update updates the TrackerMIL. func (trk TrackerMIL) Update(img Mat) (image.Rectangle, bool) { return trackerUpdate(C.Tracker(trk.p), img) }