# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow stubs. NOTE: This file is generated from templates/tensorflow.pyi using a Google-internal tool. """ # BEGIN: tensor_annotations annotations from typing import Any, TypeVar, Tuple, overload from typing_extensions import Literal from tensor_annotations.axes import Axis from tensor_annotations.tensorflow import Tensor0, Tensor1, Tensor2, Tensor3, Tensor4, Tensor5 A1 = TypeVar('A1', bound=Axis) A2 = TypeVar('A2', bound=Axis) A3 = TypeVar('A3', bound=Axis) A4 = TypeVar('A4', bound=Axis) A5 = TypeVar('A5', bound=Axis) # This alias makes the meaning clearer in code. # Unfortunately, it still shows up as 'Any' in pytype output. AnyDType = Any DT = TypeVar('DT') TRUE = Literal[True] FALSE = Literal[False] LN1 = Literal[-1] L0 = Literal[0] L1 = Literal[1] L2 = Literal[2] L3 = Literal[3] L4 = Literal[4] Shape1 = Tuple[int] Shape2 = Tuple[int, int] Shape3 = Tuple[int, int, int] Shape4 = Tuple[int, int, int, int] Shape5 = Tuple[int, int, int, int, int] # END: tensor_annotations annotations from typing import Any def __getattr__(name) -> Any: ... _HAS_DYNAMIC_ATTRIBUTES = True # BEGIN: tensor_annotations annotations for abs(...) @overload def abs(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def abs(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def abs(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def abs(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def abs(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def abs(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def abs(x, name=...) -> Any: ... # END: tensor_annotations annotations for abs(...) def accumulate_n(inputs, shape=..., tensor_dtype=..., name=...) -> Any: ... # BEGIN: tensor_annotations annotations for acos(...) @overload def acos(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def acos(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def acos(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def acos(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def acos(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def acos(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def acos(x, name=...) -> Any: ... # END: tensor_annotations annotations for acos(...) # BEGIN: tensor_annotations annotations for acosh(...) @overload def acosh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def acosh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def acosh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def acosh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def acosh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def acosh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def acosh(x, name=...) -> Any: ... # END: tensor_annotations annotations for acosh(...) def add(x, y, name=...) -> Any: ... def add_n(inputs, name=...) -> Any: ... def angle(input, name=...) -> Any: ... def approx_max_k(operand, k, reduction_dimension=..., recall_target=..., reduction_input_size_override=..., aggregate_to_topk=..., name=...) -> Any: ... def approx_min_k(operand, k, reduction_dimension=..., recall_target=..., reduction_input_size_override=..., aggregate_to_topk=..., name=...) -> Any: ... def argmax(input, axis=..., output_type=..., name=...) -> Any: ... def argmin(input, axis=..., output_type=..., name=...) -> Any: ... # BEGIN: tensor_annotations annotations for asin(...) @overload def asin(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def asin(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def asin(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def asin(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def asin(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def asin(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def asin(x, name=...) -> Any: ... # END: tensor_annotations annotations for asin(...) # BEGIN: tensor_annotations annotations for asinh(...) @overload def asinh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def asinh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def asinh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def asinh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def asinh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def asinh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def asinh(x, name=...) -> Any: ... # END: tensor_annotations annotations for asinh(...) # BEGIN: tensor_annotations annotations for atan(...) @overload def atan(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def atan(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def atan(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def atan(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def atan(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def atan(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def atan(x, name=...) -> Any: ... # END: tensor_annotations annotations for atan(...) def atan2(y, x, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for atanh(...) @overload def atanh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def atanh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def atanh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def atanh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def atanh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def atanh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def atanh(x, name=...) -> Any: ... # END: tensor_annotations annotations for atanh(...) def bessel_i0(x, name=...) -> Any: ... def bessel_i0e(x, name=...) -> Any: ... def bessel_i1(x, name=...) -> Any: ... def bessel_i1e(x, name=...) -> Any: ... def betainc(a, b, x, name=...) -> Any: ... def bincount(arr, weights=..., minlength=..., maxlength=..., dtype=..., name=..., axis=..., binary_output=...) -> Any: ... def ceil(x, name=...) -> Any: ... def confusion_matrix(labels, predictions, num_classes=..., weights=..., dtype=..., name=...) -> Any: ... def conj(x, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for cos(...) @overload def cos(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def cos(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def cos(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def cos(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def cos(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def cos(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def cos(x, name=...) -> Any: ... # END: tensor_annotations annotations for cos(...) # BEGIN: tensor_annotations annotations for cosh(...) @overload def cosh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def cosh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def cosh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def cosh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def cosh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def cosh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def cosh(x, name=...) -> Any: ... # END: tensor_annotations annotations for cosh(...) def count_nonzero(input, axis=..., keepdims=..., dtype=..., name=...) -> Any: ... def cumprod(x, axis=..., exclusive=..., reverse=..., name=...) -> Any: ... def cumsum(x, axis=..., exclusive=..., reverse=..., name=...) -> Any: ... def cumulative_logsumexp(x, axis=..., exclusive=..., reverse=..., name=...) -> Any: ... def digamma(x, name=...) -> Any: ... def divide(x, y, name=...) -> Any: ... def divide_no_nan(x, y, name=...) -> Any: ... def equal(x, y, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for erf(...) @overload def erf(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def erf(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def erf(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def erf(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def erf(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def erf(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def erf(x, name=...) -> Any: ... # END: tensor_annotations annotations for erf(...) # BEGIN: tensor_annotations annotations for erfc(...) @overload def erfc(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def erfc(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def erfc(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def erfc(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def erfc(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def erfc(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def erfc(x, name=...) -> Any: ... # END: tensor_annotations annotations for erfc(...) def erfcinv(x, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for erfinv(...) @overload def erfinv(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def erfinv(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def erfinv(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def erfinv(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def erfinv(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def erfinv(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def erfinv(x, name=...) -> Any: ... # END: tensor_annotations annotations for erfinv(...) # BEGIN: tensor_annotations annotations for exp(...) @overload def exp(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def exp(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def exp(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def exp(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def exp(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def exp(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def exp(x, name=...) -> Any: ... # END: tensor_annotations annotations for exp(...) # BEGIN: tensor_annotations annotations for expm1(...) @overload def expm1(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def expm1(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def expm1(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def expm1(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def expm1(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def expm1(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def expm1(x, name=...) -> Any: ... # END: tensor_annotations annotations for expm1(...) # BEGIN: tensor_annotations annotations for floor(...) @overload def floor(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def floor(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def floor(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def floor(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def floor(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def floor(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def floor(x, name=...) -> Any: ... # END: tensor_annotations annotations for floor(...) def floordiv(x, y, name=...) -> Any: ... def floormod(x, y, name=...) -> Any: ... def greater(x, y, name=...) -> Any: ... def greater_equal(x, y, name=...) -> Any: ... def igamma(a, x, name=...) -> Any: ... def igammac(a, x, name=...) -> Any: ... def imag(input, name=...) -> Any: ... def in_top_k(targets, predictions, k, name=...) -> Any: ... def invert_permutation(x, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for is_finite(...) @overload def is_finite(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def is_finite(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def is_finite(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def is_finite(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def is_finite(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def is_finite(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def is_finite(x, name=...) -> Any: ... # END: tensor_annotations annotations for is_finite(...) # BEGIN: tensor_annotations annotations for is_inf(...) @overload def is_inf(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def is_inf(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def is_inf(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def is_inf(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def is_inf(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def is_inf(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def is_inf(x, name=...) -> Any: ... # END: tensor_annotations annotations for is_inf(...) # BEGIN: tensor_annotations annotations for is_nan(...) @overload def is_nan(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def is_nan(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def is_nan(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def is_nan(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def is_nan(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def is_nan(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def is_nan(x, name=...) -> Any: ... # END: tensor_annotations annotations for is_nan(...) def is_non_decreasing(x, name=...) -> Any: ... def is_strictly_increasing(x, name=...) -> Any: ... def l2_normalize(x, axis=..., epsilon=..., name=..., dim=...) -> Any: ... # BEGIN: tensor_annotations annotations for lbeta(...) @overload def lbeta(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def lbeta(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def lbeta(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def lbeta(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def lbeta(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def lbeta(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def lbeta(x, name=...) -> Any: ... # END: tensor_annotations annotations for lbeta(...) def less(x, y, name=...) -> Any: ... def less_equal(x, y, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for lgamma(...) @overload def lgamma(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def lgamma(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def lgamma(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def lgamma(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def lgamma(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def lgamma(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def lgamma(x, name=...) -> Any: ... # END: tensor_annotations annotations for lgamma(...) # BEGIN: tensor_annotations annotations for log(...) @overload def log(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def log(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def log(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def log(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def log(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def log(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def log(x, name=...) -> Any: ... # END: tensor_annotations annotations for log(...) # BEGIN: tensor_annotations annotations for log1p(...) @overload def log1p(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def log1p(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def log1p(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def log1p(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def log1p(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def log1p(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def log1p(x, name=...) -> Any: ... # END: tensor_annotations annotations for log1p(...) # BEGIN: tensor_annotations annotations for log_sigmoid(...) @overload def log_sigmoid(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def log_sigmoid(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def log_sigmoid(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def log_sigmoid(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def log_sigmoid(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def log_sigmoid(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def log_sigmoid(x, name=...) -> Any: ... # END: tensor_annotations annotations for log_sigmoid(...) def log_softmax(logits, axis=..., name=...) -> Any: ... def logical_and(x, y, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for logical_not(...) @overload def logical_not(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def logical_not(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def logical_not(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def logical_not(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def logical_not(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def logical_not(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def logical_not(x, name=...) -> Any: ... # END: tensor_annotations annotations for logical_not(...) def logical_or(x, y, name=...) -> Any: ... def logical_xor(x, y, name=...) -> Any: ... def maximum(x, y, name=...) -> Any: ... def minimum(x, y, name=...) -> Any: ... def mod(x, y, name=...) -> Any: ... def multiply(x, y, name=...) -> Any: ... def multiply_no_nan(x, y, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for ndtri(...) @overload def ndtri(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def ndtri(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def ndtri(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def ndtri(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def ndtri(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def ndtri(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def ndtri(x, name=...) -> Any: ... # END: tensor_annotations annotations for ndtri(...) # BEGIN: tensor_annotations annotations for negative(...) @overload def negative(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def negative(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def negative(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def negative(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def negative(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def negative(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def negative(x, name=...) -> Any: ... # END: tensor_annotations annotations for negative(...) def nextafter(x1, x2, name=...) -> Any: ... def not_equal(x, y, name=...) -> Any: ... def polygamma(a, x, name=...) -> Any: ... def polyval(coeffs, x, name=...) -> Any: ... def pow(x, y, name=...) -> Any: ... def real(input, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for reciprocal(...) @overload def reciprocal(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def reciprocal(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def reciprocal(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def reciprocal(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def reciprocal(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def reciprocal(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def reciprocal(x, name=...) -> Any: ... # END: tensor_annotations annotations for reciprocal(...) # BEGIN: tensor_annotations annotations for reciprocal_no_nan(...) @overload def reciprocal_no_nan(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def reciprocal_no_nan(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def reciprocal_no_nan(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def reciprocal_no_nan(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def reciprocal_no_nan(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def reciprocal_no_nan(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def reciprocal_no_nan(x, name=...) -> Any: ... # END: tensor_annotations annotations for reciprocal_no_nan(...) def reduce_all(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_any(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_euclidean_norm(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_logsumexp(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_max(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_mean(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_min(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_prod(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_std(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_sum(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... def reduce_variance(input_tensor, axis=..., keepdims=..., name=...) -> Any: ... # BEGIN: tensor_annotations annotations for rint(...) @overload def rint(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def rint(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def rint(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def rint(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def rint(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def rint(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def rint(x, name=...) -> Any: ... # END: tensor_annotations annotations for rint(...) # BEGIN: tensor_annotations annotations for round(...) @overload def round(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def round(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def round(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def round(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def round(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def round(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def round(x, name=...) -> Any: ... # END: tensor_annotations annotations for round(...) # BEGIN: tensor_annotations annotations for rsqrt(...) @overload def rsqrt(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def rsqrt(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def rsqrt(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def rsqrt(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def rsqrt(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def rsqrt(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def rsqrt(x, name=...) -> Any: ... # END: tensor_annotations annotations for rsqrt(...) def scalar_mul(scalar, x, name=...) -> Any: ... def segment_max(data, segment_ids, name=...) -> Any: ... def segment_mean(data, segment_ids, name=...) -> Any: ... def segment_min(data, segment_ids, name=...) -> Any: ... def segment_prod(data, segment_ids, name=...) -> Any: ... def segment_sum(data, segment_ids, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for sigmoid(...) @overload def sigmoid(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def sigmoid(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def sigmoid(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def sigmoid(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def sigmoid(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def sigmoid(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def sigmoid(x, name=...) -> Any: ... # END: tensor_annotations annotations for sigmoid(...) # BEGIN: tensor_annotations annotations for sign(...) @overload def sign(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def sign(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def sign(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def sign(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def sign(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def sign(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def sign(x, name=...) -> Any: ... # END: tensor_annotations annotations for sign(...) # BEGIN: tensor_annotations annotations for sin(...) @overload def sin(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def sin(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def sin(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def sin(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def sin(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def sin(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def sin(x, name=...) -> Any: ... # END: tensor_annotations annotations for sin(...) # BEGIN: tensor_annotations annotations for sinh(...) @overload def sinh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def sinh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def sinh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def sinh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def sinh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def sinh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def sinh(x, name=...) -> Any: ... # END: tensor_annotations annotations for sinh(...) def sobol_sample(dim, num_results, skip=..., dtype=..., name=...) -> Any: ... def softmax(logits, axis=..., name=...) -> Any: ... # BEGIN: tensor_annotations annotations for softplus(...) @overload def softplus(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def softplus(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def softplus(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def softplus(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def softplus(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def softplus(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def softplus(x, name=...) -> Any: ... # END: tensor_annotations annotations for softplus(...) # BEGIN: tensor_annotations annotations for softsign(...) @overload def softsign(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def softsign(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def softsign(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def softsign(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def softsign(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def softsign(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def softsign(x, name=...) -> Any: ... # END: tensor_annotations annotations for softsign(...) # BEGIN: tensor_annotations annotations for sqrt(...) @overload def sqrt(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def sqrt(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def sqrt(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def sqrt(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def sqrt(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def sqrt(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def sqrt(x, name=...) -> Any: ... # END: tensor_annotations annotations for sqrt(...) # BEGIN: tensor_annotations annotations for square(...) @overload def square(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def square(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def square(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def square(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def square(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def square(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def square(x, name=...) -> Any: ... # END: tensor_annotations annotations for square(...) def squared_difference(x, y, name=...) -> Any: ... def subtract(x, y, name=...) -> Any: ... # BEGIN: tensor_annotations annotations for tan(...) @overload def tan(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def tan(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def tan(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def tan(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def tan(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def tan(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def tan(x, name=...) -> Any: ... # END: tensor_annotations annotations for tan(...) # BEGIN: tensor_annotations annotations for tanh(...) @overload def tanh(x: Tensor0[DT], name=...) -> Tensor0[DT]: ... @overload def tanh(x: Tensor1[DT, A1], name=...) -> Tensor1[DT, A1]: ... @overload def tanh(x: Tensor2[DT, A1, A2], name=...) -> Tensor2[DT, A1, A2]: ... @overload def tanh(x: Tensor3[DT, A1, A2, A3], name=...) -> Tensor3[DT, A1, A2, A3]: ... @overload def tanh(x: Tensor4[DT, A1, A2, A3, A4], name=...) -> Tensor4[DT, A1, A2, A3, A4]: ... @overload def tanh(x: Tensor5[DT, A1, A2, A3, A4, A5], name=...) -> Tensor5[DT, A1, A2, A3, A4, A5]: ... @overload def tanh(x, name=...) -> Any: ... # END: tensor_annotations annotations for tanh(...) def top_k(input, k=..., sorted=..., name=...) -> Any: ... def truediv(x, y, name=...) -> Any: ... def unsorted_segment_max(data, segment_ids, num_segments, name=...) -> Any: ... def unsorted_segment_mean(data, segment_ids, num_segments, name=...) -> Any: ... def unsorted_segment_min(data, segment_ids, num_segments, name=...) -> Any: ... def unsorted_segment_prod(data, segment_ids, num_segments, name=...) -> Any: ... def unsorted_segment_sqrt_n(data, segment_ids, num_segments, name=...) -> Any: ... def unsorted_segment_sum(data, segment_ids, num_segments, name=...) -> Any: ... def xdivy(x, y, name=...) -> Any: ... def xlog1py(x, y, name=...) -> Any: ... def xlogy(x, y, name=...) -> Any: ... def zero_fraction(value, name=...) -> Any: ... def zeta(x, q, name=...) -> Any: ...