858 lines
22 KiB
C++
858 lines
22 KiB
C++
#include "core.h"
|
|
#include <string.h>
|
|
|
|
// Mat_New creates a new empty Mat
|
|
Mat Mat_New() {
|
|
return new cv::Mat();
|
|
}
|
|
|
|
// Mat_NewWithSize creates a new Mat with a specific size dimension and number of channels.
|
|
Mat Mat_NewWithSize(int rows, int cols, int type) {
|
|
return new cv::Mat(rows, cols, type, 0.0);
|
|
}
|
|
|
|
// Mat_NewWithSizes creates a new Mat with specific dimension sizes and number of channels.
|
|
Mat Mat_NewWithSizes(struct IntVector sizes, int type) {
|
|
std::vector<int> sizess;
|
|
for (int i = 0; i < sizes.length; ++i) {
|
|
sizess.push_back(sizes.val[i]);
|
|
}
|
|
return new cv::Mat(sizess, type);
|
|
}
|
|
|
|
// Mat_NewFromScalar creates a new Mat from a Scalar. Intended to be used
|
|
// for Mat comparison operation such as InRange.
|
|
Mat Mat_NewFromScalar(Scalar ar, int type) {
|
|
cv::Scalar c = cv::Scalar(ar.val1, ar.val2, ar.val3, ar.val4);
|
|
return new cv::Mat(1, 1, type, c);
|
|
}
|
|
|
|
// Mat_NewWithSizeFromScalar creates a new Mat from a Scalar with a specific size dimension and number of channels
|
|
Mat Mat_NewWithSizeFromScalar(Scalar ar, int rows, int cols, int type) {
|
|
cv::Scalar c = cv::Scalar(ar.val1, ar.val2, ar.val3, ar.val4);
|
|
return new cv::Mat(rows, cols, type, c);
|
|
}
|
|
|
|
Mat Mat_NewFromBytes(int rows, int cols, int type, struct ByteArray buf) {
|
|
return new cv::Mat(rows, cols, type, buf.data);
|
|
}
|
|
|
|
// Mat_NewWithSizesFromScalar creates multidimensional Mat from a scalar
|
|
Mat Mat_NewWithSizesFromScalar(IntVector sizes, int type, Scalar ar) {
|
|
std::vector<int> _sizes;
|
|
for (int i = 0, *v = sizes.val; i < sizes.length; ++v, ++i) {
|
|
_sizes.push_back(*v);
|
|
}
|
|
|
|
cv::Scalar c = cv::Scalar(ar.val1, ar.val2, ar.val3, ar.val4);
|
|
return new cv::Mat(_sizes, type, c);
|
|
}
|
|
|
|
// Mat_NewWithSizesFromBytes creates multidimensional Mat from a bytes
|
|
Mat Mat_NewWithSizesFromBytes(IntVector sizes, int type, struct ByteArray buf) {
|
|
std::vector<int> _sizes;
|
|
for (int i = 0, *v = sizes.val; i < sizes.length; ++v, ++i) {
|
|
_sizes.push_back(*v);
|
|
}
|
|
|
|
return new cv::Mat(_sizes, type, buf.data);
|
|
}
|
|
|
|
Mat Eye(int rows, int cols, int type) {
|
|
cv::Mat temp = cv::Mat::eye(rows, cols, type);
|
|
return new cv::Mat(rows, cols, type, temp.data);
|
|
}
|
|
|
|
Mat Zeros(int rows, int cols, int type) {
|
|
cv::Mat temp = cv::Mat::zeros(rows, cols, type);
|
|
return new cv::Mat(rows, cols, type, temp.data);
|
|
}
|
|
|
|
Mat Ones(int rows, int cols, int type) {
|
|
cv::Mat temp = cv::Mat::ones(rows, cols, type);
|
|
return new cv::Mat(rows, cols, type, temp.data);
|
|
}
|
|
|
|
Mat Mat_FromPtr(Mat m, int rows, int cols, int type, int prow, int pcol) {
|
|
return new cv::Mat(rows, cols, type, m->ptr(prow, pcol));
|
|
}
|
|
|
|
// Mat_Close deletes an existing Mat
|
|
void Mat_Close(Mat m) {
|
|
delete m;
|
|
}
|
|
|
|
// Mat_Empty tests if a Mat is empty
|
|
int Mat_Empty(Mat m) {
|
|
return m->empty();
|
|
}
|
|
|
|
// Mat_IsContinuous tests if a Mat is continuous
|
|
bool Mat_IsContinuous(Mat m) {
|
|
return m->isContinuous();
|
|
}
|
|
|
|
// Mat_Clone returns a clone of this Mat
|
|
Mat Mat_Clone(Mat m) {
|
|
return new cv::Mat(m->clone());
|
|
}
|
|
|
|
// Mat_CopyTo copies this Mat to another Mat.
|
|
void Mat_CopyTo(Mat m, Mat dst) {
|
|
m->copyTo(*dst);
|
|
}
|
|
|
|
// Mat_CopyToWithMask copies this Mat to another Mat while applying the mask
|
|
void Mat_CopyToWithMask(Mat m, Mat dst, Mat mask) {
|
|
m->copyTo(*dst, *mask);
|
|
}
|
|
|
|
void Mat_ConvertTo(Mat m, Mat dst, int type) {
|
|
m->convertTo(*dst, type);
|
|
}
|
|
|
|
void Mat_ConvertToWithParams(Mat m, Mat dst, int type, float alpha, float beta) {
|
|
m->convertTo(*dst, type, alpha, beta);
|
|
}
|
|
|
|
// Mat_ToBytes returns the bytes representation of the underlying data.
|
|
struct ByteArray Mat_ToBytes(Mat m) {
|
|
return toByteArray(reinterpret_cast<const char*>(m->data), m->total() * m->elemSize());
|
|
}
|
|
|
|
struct ByteArray Mat_DataPtr(Mat m) {
|
|
return ByteArray {reinterpret_cast<char*>(m->data), static_cast<int>(m->total() * m->elemSize())};
|
|
}
|
|
|
|
// Mat_Region returns a Mat of a region of another Mat
|
|
Mat Mat_Region(Mat m, Rect r) {
|
|
return new cv::Mat(*m, cv::Rect(r.x, r.y, r.width, r.height));
|
|
}
|
|
|
|
Mat Mat_Reshape(Mat m, int cn, int rows) {
|
|
return new cv::Mat(m->reshape(cn, rows));
|
|
}
|
|
|
|
void Mat_PatchNaNs(Mat m) {
|
|
cv::patchNaNs(*m);
|
|
}
|
|
|
|
Mat Mat_ConvertFp16(Mat m) {
|
|
Mat dst = new cv::Mat();
|
|
cv::convertFp16(*m, *dst);
|
|
return dst;
|
|
}
|
|
|
|
Mat Mat_Sqrt(Mat m) {
|
|
Mat dst = new cv::Mat();
|
|
cv::sqrt(*m, *dst);
|
|
return dst;
|
|
}
|
|
|
|
// Mat_Mean calculates the mean value M of array elements, independently for each channel, and return it as Scalar vector
|
|
Scalar Mat_Mean(Mat m) {
|
|
cv::Scalar c = cv::mean(*m);
|
|
Scalar scal = Scalar();
|
|
scal.val1 = c.val[0];
|
|
scal.val2 = c.val[1];
|
|
scal.val3 = c.val[2];
|
|
scal.val4 = c.val[3];
|
|
return scal;
|
|
}
|
|
|
|
// Mat_MeanWithMask calculates the mean value M of array elements,
|
|
// independently for each channel, and returns it as Scalar vector
|
|
// while applying the mask.
|
|
|
|
Scalar Mat_MeanWithMask(Mat m, Mat mask){
|
|
cv::Scalar c = cv::mean(*m, *mask);
|
|
Scalar scal = Scalar();
|
|
scal.val1 = c.val[0];
|
|
scal.val2 = c.val[1];
|
|
scal.val3 = c.val[2];
|
|
scal.val4 = c.val[3];
|
|
return scal;
|
|
}
|
|
|
|
void LUT(Mat src, Mat lut, Mat dst) {
|
|
cv::LUT(*src, *lut, *dst);
|
|
}
|
|
|
|
// Mat_Rows returns how many rows in this Mat.
|
|
int Mat_Rows(Mat m) {
|
|
return m->rows;
|
|
}
|
|
|
|
// Mat_Cols returns how many columns in this Mat.
|
|
int Mat_Cols(Mat m) {
|
|
return m->cols;
|
|
}
|
|
|
|
// Mat_Channels returns how many channels in this Mat.
|
|
int Mat_Channels(Mat m) {
|
|
return m->channels();
|
|
}
|
|
|
|
// Mat_Type returns the type from this Mat.
|
|
int Mat_Type(Mat m) {
|
|
return m->type();
|
|
}
|
|
|
|
// Mat_Step returns the number of bytes each matrix row occupies.
|
|
int Mat_Step(Mat m) {
|
|
return m->step;
|
|
}
|
|
|
|
int Mat_Total(Mat m) {
|
|
return m->total();
|
|
}
|
|
|
|
void Mat_Size(Mat m, IntVector* res) {
|
|
cv::MatSize ms(m->size);
|
|
int* ids = new int[ms.dims()];
|
|
|
|
for (size_t i = 0; i < ms.dims(); ++i) {
|
|
ids[i] = ms[i];
|
|
}
|
|
|
|
res->length = ms.dims();
|
|
res->val = ids;
|
|
return;
|
|
}
|
|
|
|
// Mat_GetUChar returns a specific row/col value from this Mat expecting
|
|
// each element to contain a schar aka CV_8U.
|
|
uint8_t Mat_GetUChar(Mat m, int row, int col) {
|
|
return m->at<uchar>(row, col);
|
|
}
|
|
|
|
uint8_t Mat_GetUChar3(Mat m, int x, int y, int z) {
|
|
return m->at<uchar>(x, y, z);
|
|
}
|
|
|
|
// Mat_GetSChar returns a specific row/col value from this Mat expecting
|
|
// each element to contain a schar aka CV_8S.
|
|
int8_t Mat_GetSChar(Mat m, int row, int col) {
|
|
return m->at<schar>(row, col);
|
|
}
|
|
|
|
int8_t Mat_GetSChar3(Mat m, int x, int y, int z) {
|
|
return m->at<schar>(x, y, z);
|
|
}
|
|
|
|
// Mat_GetShort returns a specific row/col value from this Mat expecting
|
|
// each element to contain a short aka CV_16S.
|
|
int16_t Mat_GetShort(Mat m, int row, int col) {
|
|
return m->at<short>(row, col);
|
|
}
|
|
|
|
int16_t Mat_GetShort3(Mat m, int x, int y, int z) {
|
|
return m->at<short>(x, y, z);
|
|
}
|
|
|
|
// Mat_GetInt returns a specific row/col value from this Mat expecting
|
|
// each element to contain an int aka CV_32S.
|
|
int32_t Mat_GetInt(Mat m, int row, int col) {
|
|
return m->at<int>(row, col);
|
|
}
|
|
|
|
int32_t Mat_GetInt3(Mat m, int x, int y, int z) {
|
|
return m->at<int>(x, y, z);
|
|
}
|
|
|
|
// Mat_GetFloat returns a specific row/col value from this Mat expecting
|
|
// each element to contain a float aka CV_32F.
|
|
float Mat_GetFloat(Mat m, int row, int col) {
|
|
return m->at<float>(row, col);
|
|
}
|
|
|
|
float Mat_GetFloat3(Mat m, int x, int y, int z) {
|
|
return m->at<float>(x, y, z);
|
|
}
|
|
|
|
// Mat_GetDouble returns a specific row/col value from this Mat expecting
|
|
// each element to contain a double aka CV_64F.
|
|
double Mat_GetDouble(Mat m, int row, int col) {
|
|
return m->at<double>(row, col);
|
|
}
|
|
|
|
double Mat_GetDouble3(Mat m, int x, int y, int z) {
|
|
return m->at<double>(x, y, z);
|
|
}
|
|
|
|
void Mat_SetTo(Mat m, Scalar value) {
|
|
cv::Scalar c_value(value.val1, value.val2, value.val3, value.val4);
|
|
m->setTo(c_value);
|
|
}
|
|
|
|
// Mat_SetUChar set a specific row/col value from this Mat expecting
|
|
// each element to contain a schar aka CV_8U.
|
|
void Mat_SetUChar(Mat m, int row, int col, uint8_t val) {
|
|
m->at<uchar>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetUChar3(Mat m, int x, int y, int z, uint8_t val) {
|
|
m->at<uchar>(x, y, z) = val;
|
|
}
|
|
|
|
// Mat_SetSChar set a specific row/col value from this Mat expecting
|
|
// each element to contain a schar aka CV_8S.
|
|
void Mat_SetSChar(Mat m, int row, int col, int8_t val) {
|
|
m->at<schar>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetSChar3(Mat m, int x, int y, int z, int8_t val) {
|
|
m->at<schar>(x, y, z) = val;
|
|
}
|
|
|
|
// Mat_SetShort set a specific row/col value from this Mat expecting
|
|
// each element to contain a short aka CV_16S.
|
|
void Mat_SetShort(Mat m, int row, int col, int16_t val) {
|
|
m->at<short>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetShort3(Mat m, int x, int y, int z, int16_t val) {
|
|
m->at<short>(x, y, z) = val;
|
|
}
|
|
|
|
// Mat_SetInt set a specific row/col value from this Mat expecting
|
|
// each element to contain an int aka CV_32S.
|
|
void Mat_SetInt(Mat m, int row, int col, int32_t val) {
|
|
m->at<int>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetInt3(Mat m, int x, int y, int z, int32_t val) {
|
|
m->at<int>(x, y, z) = val;
|
|
}
|
|
|
|
// Mat_SetFloat set a specific row/col value from this Mat expecting
|
|
// each element to contain a float aka CV_32F.
|
|
void Mat_SetFloat(Mat m, int row, int col, float val) {
|
|
m->at<float>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetFloat3(Mat m, int x, int y, int z, float val) {
|
|
m->at<float>(x, y, z) = val;
|
|
}
|
|
|
|
// Mat_SetDouble set a specific row/col value from this Mat expecting
|
|
// each element to contain a double aka CV_64F.
|
|
void Mat_SetDouble(Mat m, int row, int col, double val) {
|
|
m->at<double>(row, col) = val;
|
|
}
|
|
|
|
void Mat_SetDouble3(Mat m, int x, int y, int z, double val) {
|
|
m->at<double>(x, y, z) = val;
|
|
}
|
|
|
|
void Mat_AddUChar(Mat m, uint8_t val) {
|
|
*m += val;
|
|
}
|
|
|
|
void Mat_SubtractUChar(Mat m, uint8_t val) {
|
|
*m -= val;
|
|
}
|
|
|
|
void Mat_MultiplyUChar(Mat m, uint8_t val) {
|
|
*m *= val;
|
|
}
|
|
|
|
void Mat_DivideUChar(Mat m, uint8_t val) {
|
|
*m /= val;
|
|
}
|
|
|
|
void Mat_AddFloat(Mat m, float val) {
|
|
*m += val;
|
|
}
|
|
|
|
void Mat_SubtractFloat(Mat m, float val) {
|
|
*m -= val;
|
|
}
|
|
|
|
void Mat_MultiplyFloat(Mat m, float val) {
|
|
*m *= val;
|
|
}
|
|
|
|
void Mat_DivideFloat(Mat m, float val) {
|
|
*m /= val;
|
|
}
|
|
|
|
Mat Mat_MultiplyMatrix(Mat x, Mat y) {
|
|
return new cv::Mat((*x) * (*y));
|
|
}
|
|
|
|
Mat Mat_T(Mat x) {
|
|
return new cv::Mat(x->t());
|
|
}
|
|
|
|
void Mat_AbsDiff(Mat src1, Mat src2, Mat dst) {
|
|
cv::absdiff(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_Add(Mat src1, Mat src2, Mat dst) {
|
|
cv::add(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_AddWeighted(Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst) {
|
|
cv::addWeighted(*src1, alpha, *src2, beta, gamma, *dst);
|
|
}
|
|
|
|
void Mat_BitwiseAnd(Mat src1, Mat src2, Mat dst) {
|
|
cv::bitwise_and(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_BitwiseAndWithMask(Mat src1, Mat src2, Mat dst, Mat mask){
|
|
cv::bitwise_and(*src1, *src2, *dst, *mask);
|
|
}
|
|
|
|
void Mat_BitwiseNot(Mat src1, Mat dst) {
|
|
cv::bitwise_not(*src1, *dst);
|
|
}
|
|
|
|
void Mat_BitwiseNotWithMask(Mat src1, Mat dst, Mat mask) {
|
|
cv::bitwise_not(*src1, *dst, *mask);
|
|
}
|
|
|
|
void Mat_BitwiseOr(Mat src1, Mat src2, Mat dst) {
|
|
cv::bitwise_or(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_BitwiseOrWithMask(Mat src1, Mat src2, Mat dst, Mat mask) {
|
|
cv::bitwise_or(*src1, *src2, *dst, *mask);
|
|
}
|
|
|
|
void Mat_BitwiseXor(Mat src1, Mat src2, Mat dst) {
|
|
cv::bitwise_xor(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_BitwiseXorWithMask(Mat src1, Mat src2, Mat dst, Mat mask) {
|
|
cv::bitwise_xor(*src1, *src2, *dst, *mask);
|
|
}
|
|
|
|
void Mat_BatchDistance(Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K,
|
|
Mat mask, int update, bool crosscheck) {
|
|
cv::batchDistance(*src1, *src2, *dist, dtype, *nidx, normType, K, *mask, update, crosscheck);
|
|
}
|
|
|
|
int Mat_BorderInterpolate(int p, int len, int borderType) {
|
|
return cv::borderInterpolate(p, len, borderType);
|
|
}
|
|
|
|
void Mat_CalcCovarMatrix(Mat samples, Mat covar, Mat mean, int flags, int ctype) {
|
|
cv::calcCovarMatrix(*samples, *covar, *mean, flags, ctype);
|
|
}
|
|
|
|
void Mat_CartToPolar(Mat x, Mat y, Mat magnitude, Mat angle, bool angleInDegrees) {
|
|
cv::cartToPolar(*x, *y, *magnitude, *angle, angleInDegrees);
|
|
}
|
|
|
|
bool Mat_CheckRange(Mat m) {
|
|
return cv::checkRange(*m);
|
|
}
|
|
|
|
void Mat_Compare(Mat src1, Mat src2, Mat dst, int ct) {
|
|
cv::compare(*src1, *src2, *dst, ct);
|
|
}
|
|
|
|
int Mat_CountNonZero(Mat src) {
|
|
return cv::countNonZero(*src);
|
|
}
|
|
|
|
|
|
void Mat_CompleteSymm(Mat m, bool lowerToUpper) {
|
|
cv::completeSymm(*m, lowerToUpper);
|
|
}
|
|
|
|
void Mat_ConvertScaleAbs(Mat src, Mat dst, double alpha, double beta) {
|
|
cv::convertScaleAbs(*src, *dst, alpha, beta);
|
|
}
|
|
|
|
void Mat_CopyMakeBorder(Mat src, Mat dst, int top, int bottom, int left, int right, int borderType,
|
|
Scalar value) {
|
|
cv::Scalar c_value(value.val1, value.val2, value.val3, value.val4);
|
|
cv::copyMakeBorder(*src, *dst, top, bottom, left, right, borderType, c_value);
|
|
}
|
|
|
|
void Mat_DCT(Mat src, Mat dst, int flags) {
|
|
cv::dct(*src, *dst, flags);
|
|
}
|
|
|
|
double Mat_Determinant(Mat m) {
|
|
return cv::determinant(*m);
|
|
}
|
|
|
|
void Mat_DFT(Mat m, Mat dst, int flags) {
|
|
cv::dft(*m, *dst, flags);
|
|
}
|
|
|
|
void Mat_Divide(Mat src1, Mat src2, Mat dst) {
|
|
cv::divide(*src1, *src2, *dst);
|
|
}
|
|
|
|
bool Mat_Eigen(Mat src, Mat eigenvalues, Mat eigenvectors) {
|
|
return cv::eigen(*src, *eigenvalues, *eigenvectors);
|
|
}
|
|
|
|
void Mat_EigenNonSymmetric(Mat src, Mat eigenvalues, Mat eigenvectors) {
|
|
cv::eigenNonSymmetric(*src, *eigenvalues, *eigenvectors);
|
|
}
|
|
|
|
void Mat_Exp(Mat src, Mat dst) {
|
|
cv::exp(*src, *dst);
|
|
}
|
|
|
|
void Mat_ExtractChannel(Mat src, Mat dst, int coi) {
|
|
cv::extractChannel(*src, *dst, coi);
|
|
}
|
|
|
|
void Mat_FindNonZero(Mat src, Mat idx) {
|
|
cv::findNonZero(*src, *idx);
|
|
}
|
|
|
|
void Mat_Flip(Mat src, Mat dst, int flipCode) {
|
|
cv::flip(*src, *dst, flipCode);
|
|
}
|
|
|
|
void Mat_Gemm(Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst, int flags) {
|
|
cv::gemm(*src1, *src2, alpha, *src3, beta, *dst, flags);
|
|
}
|
|
|
|
int Mat_GetOptimalDFTSize(int vecsize) {
|
|
return cv::getOptimalDFTSize(vecsize);
|
|
}
|
|
|
|
void Mat_Hconcat(Mat src1, Mat src2, Mat dst) {
|
|
cv::hconcat(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_Vconcat(Mat src1, Mat src2, Mat dst) {
|
|
cv::vconcat(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Rotate(Mat src, Mat dst, int rotateCode) {
|
|
cv::rotate(*src, *dst, rotateCode);
|
|
}
|
|
|
|
void Mat_Idct(Mat src, Mat dst, int flags) {
|
|
cv::idct(*src, *dst, flags);
|
|
}
|
|
|
|
void Mat_Idft(Mat src, Mat dst, int flags, int nonzeroRows) {
|
|
cv::idft(*src, *dst, flags, nonzeroRows);
|
|
}
|
|
|
|
void Mat_InRange(Mat src, Mat lowerb, Mat upperb, Mat dst) {
|
|
cv::inRange(*src, *lowerb, *upperb, *dst);
|
|
}
|
|
|
|
void Mat_InRangeWithScalar(Mat src, Scalar lowerb, Scalar upperb, Mat dst) {
|
|
cv::Scalar lb = cv::Scalar(lowerb.val1, lowerb.val2, lowerb.val3, lowerb.val4);
|
|
cv::Scalar ub = cv::Scalar(upperb.val1, upperb.val2, upperb.val3, upperb.val4);
|
|
cv::inRange(*src, lb, ub, *dst);
|
|
}
|
|
|
|
void Mat_InsertChannel(Mat src, Mat dst, int coi) {
|
|
cv::insertChannel(*src, *dst, coi);
|
|
}
|
|
|
|
double Mat_Invert(Mat src, Mat dst, int flags) {
|
|
double ret = cv::invert(*src, *dst, flags);
|
|
return ret;
|
|
}
|
|
|
|
double KMeans(Mat data, int k, Mat bestLabels, TermCriteria criteria, int attempts, int flags, Mat centers) {
|
|
double ret = cv::kmeans(*data, k, *bestLabels, *criteria, attempts, flags, *centers);
|
|
return ret;
|
|
}
|
|
|
|
double KMeansPoints(Contour points, int k, Mat bestLabels, TermCriteria criteria, int attempts, int flags, Mat centers) {
|
|
std::vector<cv::Point2f> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point2f(points.points[i].x, points.points[i].y));
|
|
}
|
|
double ret = cv::kmeans(pts, k, *bestLabels, *criteria, attempts, flags, *centers);
|
|
return ret;
|
|
}
|
|
|
|
void Mat_Log(Mat src, Mat dst) {
|
|
cv::log(*src, *dst);
|
|
}
|
|
|
|
void Mat_Magnitude(Mat x, Mat y, Mat magnitude) {
|
|
cv::magnitude(*x, *y, *magnitude);
|
|
}
|
|
|
|
void Mat_Max(Mat src1, Mat src2, Mat dst) {
|
|
cv::max(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_MeanStdDev(Mat src, Mat dstMean, Mat dstStdDev) {
|
|
cv::meanStdDev(*src, *dstMean, *dstStdDev);
|
|
}
|
|
|
|
void Mat_Merge(struct Mats mats, Mat dst) {
|
|
std::vector<cv::Mat> images;
|
|
|
|
for (int i = 0; i < mats.length; ++i) {
|
|
images.push_back(*mats.mats[i]);
|
|
}
|
|
|
|
cv::merge(images, *dst);
|
|
}
|
|
|
|
void Mat_Min(Mat src1, Mat src2, Mat dst) {
|
|
cv::min(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_MinMaxIdx(Mat m, double* minVal, double* maxVal, int* minIdx, int* maxIdx) {
|
|
cv::minMaxIdx(*m, minVal, maxVal, minIdx, maxIdx);
|
|
}
|
|
|
|
void Mat_MinMaxLoc(Mat m, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc) {
|
|
cv::Point cMinLoc;
|
|
cv::Point cMaxLoc;
|
|
cv::minMaxLoc(*m, minVal, maxVal, &cMinLoc, &cMaxLoc);
|
|
|
|
minLoc->x = cMinLoc.x;
|
|
minLoc->y = cMinLoc.y;
|
|
maxLoc->x = cMaxLoc.x;
|
|
maxLoc->y = cMaxLoc.y;
|
|
}
|
|
|
|
void Mat_MixChannels(struct Mats src, struct Mats dst, struct IntVector fromTo) {
|
|
std::vector<cv::Mat> srcMats;
|
|
|
|
for (int i = 0; i < src.length; ++i) {
|
|
srcMats.push_back(*src.mats[i]);
|
|
}
|
|
|
|
std::vector<cv::Mat> dstMats;
|
|
|
|
for (int i = 0; i < dst.length; ++i) {
|
|
dstMats.push_back(*dst.mats[i]);
|
|
}
|
|
|
|
std::vector<int> fromTos;
|
|
|
|
for (int i = 0; i < fromTo.length; ++i) {
|
|
fromTos.push_back(fromTo.val[i]);
|
|
}
|
|
|
|
cv::mixChannels(srcMats, dstMats, fromTos);
|
|
}
|
|
|
|
void Mat_MulSpectrums(Mat a, Mat b, Mat c, int flags) {
|
|
cv::mulSpectrums(*a, *b, *c, flags);
|
|
}
|
|
|
|
void Mat_Multiply(Mat src1, Mat src2, Mat dst) {
|
|
cv::multiply(*src1, *src2, *dst);
|
|
}
|
|
|
|
void Mat_MultiplyWithParams(Mat src1, Mat src2, Mat dst, double scale, int dtype) {
|
|
cv::multiply(*src1, *src2, *dst, scale, dtype);
|
|
}
|
|
|
|
void Mat_Normalize(Mat src, Mat dst, double alpha, double beta, int typ) {
|
|
cv::normalize(*src, *dst, alpha, beta, typ);
|
|
}
|
|
|
|
double Norm(Mat src1, int normType) {
|
|
return cv::norm(*src1, normType);
|
|
}
|
|
|
|
double NormWithMats(Mat src1, Mat src2, int normType) {
|
|
return cv::norm(*src1, *src2, normType);
|
|
}
|
|
|
|
void Mat_PerspectiveTransform(Mat src, Mat dst, Mat tm) {
|
|
cv::perspectiveTransform(*src, *dst, *tm);
|
|
}
|
|
|
|
bool Mat_Solve(Mat src1, Mat src2, Mat dst, int flags) {
|
|
return cv::solve(*src1, *src2, *dst, flags);
|
|
}
|
|
|
|
int Mat_SolveCubic(Mat coeffs, Mat roots) {
|
|
return cv::solveCubic(*coeffs, *roots);
|
|
}
|
|
|
|
double Mat_SolvePoly(Mat coeffs, Mat roots, int maxIters) {
|
|
return cv::solvePoly(*coeffs, *roots, maxIters);
|
|
}
|
|
|
|
void Mat_Reduce(Mat src, Mat dst, int dim, int rType, int dType) {
|
|
cv::reduce(*src, *dst, dim, rType, dType);
|
|
}
|
|
|
|
void Mat_Repeat(Mat src, int nY, int nX, Mat dst) {
|
|
cv::repeat(*src, nY, nX, *dst);
|
|
}
|
|
|
|
void Mat_ScaleAdd(Mat src1, double alpha, Mat src2, Mat dst) {
|
|
cv::scaleAdd(*src1, alpha, *src2, *dst);
|
|
}
|
|
|
|
void Mat_SetIdentity(Mat src, double scalar) {
|
|
cv::setIdentity(*src, scalar);
|
|
}
|
|
|
|
void Mat_Sort(Mat src, Mat dst, int flags) {
|
|
cv::sort(*src, *dst, flags);
|
|
}
|
|
|
|
void Mat_SortIdx(Mat src, Mat dst, int flags) {
|
|
cv::sortIdx(*src, *dst, flags);
|
|
}
|
|
|
|
void Mat_Split(Mat src, struct Mats* mats) {
|
|
std::vector<cv::Mat> channels;
|
|
cv::split(*src, channels);
|
|
mats->mats = new Mat[channels.size()];
|
|
|
|
for (size_t i = 0; i < channels.size(); ++i) {
|
|
mats->mats[i] = new cv::Mat(channels[i]);
|
|
}
|
|
|
|
mats->length = (int)channels.size();
|
|
}
|
|
|
|
void Mat_Subtract(Mat src1, Mat src2, Mat dst) {
|
|
cv::subtract(*src1, *src2, *dst);
|
|
}
|
|
|
|
Scalar Mat_Trace(Mat src) {
|
|
cv::Scalar c = cv::trace(*src);
|
|
Scalar scal = Scalar();
|
|
scal.val1 = c.val[0];
|
|
scal.val2 = c.val[1];
|
|
scal.val3 = c.val[2];
|
|
scal.val4 = c.val[3];
|
|
return scal;
|
|
}
|
|
|
|
void Mat_Transform(Mat src, Mat dst, Mat tm) {
|
|
cv::transform(*src, *dst, *tm);
|
|
}
|
|
|
|
void Mat_Transpose(Mat src, Mat dst) {
|
|
cv::transpose(*src, *dst);
|
|
}
|
|
|
|
void Mat_PolarToCart(Mat magnitude, Mat degree, Mat x, Mat y, bool angleInDegrees) {
|
|
cv::polarToCart(*magnitude, *degree, *x, *y, angleInDegrees);
|
|
}
|
|
|
|
void Mat_Pow(Mat src, double power, Mat dst) {
|
|
cv::pow(*src, power, *dst);
|
|
}
|
|
|
|
void Mat_Phase(Mat x, Mat y, Mat angle, bool angleInDegrees) {
|
|
cv::phase(*x, *y, *angle, angleInDegrees);
|
|
}
|
|
|
|
|
|
Scalar Mat_Sum(Mat src) {
|
|
cv::Scalar c = cv::sum(*src);
|
|
Scalar scal = Scalar();
|
|
scal.val1 = c.val[0];
|
|
scal.val2 = c.val[1];
|
|
scal.val3 = c.val[2];
|
|
scal.val4 = c.val[3];
|
|
return scal;
|
|
}
|
|
|
|
// TermCriteria_New creates a new TermCriteria
|
|
TermCriteria TermCriteria_New(int typ, int maxCount, double epsilon) {
|
|
return new cv::TermCriteria(typ, maxCount, epsilon);
|
|
}
|
|
|
|
void Contours_Close(struct Contours cs) {
|
|
for (int i = 0; i < cs.length; i++) {
|
|
Points_Close(cs.contours[i]);
|
|
}
|
|
|
|
delete[] cs.contours;
|
|
}
|
|
|
|
void CStrings_Close(struct CStrings cstrs) {
|
|
for ( int i = 0; i < cstrs.length; i++ ) {
|
|
delete [] cstrs.strs[i];
|
|
}
|
|
delete [] cstrs.strs;
|
|
}
|
|
|
|
void KeyPoints_Close(struct KeyPoints ks) {
|
|
delete[] ks.keypoints;
|
|
}
|
|
|
|
void Points_Close(Points ps) {
|
|
for (size_t i = 0; i < ps.length; i++) {
|
|
Point_Close(ps.points[i]);
|
|
}
|
|
|
|
delete[] ps.points;
|
|
}
|
|
|
|
void Point_Close(Point p) {}
|
|
|
|
void Rects_Close(struct Rects rs) {
|
|
delete[] rs.rects;
|
|
}
|
|
|
|
void DMatches_Close(struct DMatches ds) {
|
|
delete[] ds.dmatches;
|
|
}
|
|
|
|
void MultiDMatches_Close(struct MultiDMatches mds) {
|
|
for (size_t i = 0; i < mds.length; i++) {
|
|
DMatches_Close(mds.dmatches[i]);
|
|
}
|
|
|
|
delete[] mds.dmatches;
|
|
}
|
|
|
|
struct DMatches MultiDMatches_get(struct MultiDMatches mds, int index) {
|
|
return mds.dmatches[index];
|
|
}
|
|
|
|
// since it is next to impossible to iterate over mats.mats on the cgo side
|
|
Mat Mats_get(struct Mats mats, int i) {
|
|
return mats.mats[i];
|
|
}
|
|
|
|
void Mats_Close(struct Mats mats) {
|
|
delete[] mats.mats;
|
|
}
|
|
|
|
void ByteArray_Release(struct ByteArray buf) {
|
|
delete[] buf.data;
|
|
}
|
|
|
|
struct ByteArray toByteArray(const char* buf, int len) {
|
|
ByteArray ret = {new char[len], len};
|
|
memcpy(ret.data, buf, len);
|
|
return ret;
|
|
}
|
|
|
|
int64 GetCVTickCount() {
|
|
return cv::getTickCount();
|
|
}
|
|
|
|
double GetTickFrequency() {
|
|
return cv::getTickFrequency();
|
|
}
|
|
|
|
Mat Mat_rowRange(Mat m,int startrow,int endrow) {
|
|
return new cv::Mat(m->rowRange(startrow,endrow));
|
|
}
|
|
|
|
Mat Mat_colRange(Mat m,int startrow,int endrow) {
|
|
return new cv::Mat(m->colRange(startrow,endrow));
|
|
}
|
|
|
|
void IntVector_Close(struct IntVector ivec) {
|
|
delete[] ivec.val;
|
|
}
|