robocar-led/vendor/periph.io/x/periph/conn/gpio/gpiostream/gpiostream.go

221 lines
5.8 KiB
Go
Raw Normal View History

2019-12-14 10:56:22 +00:00
// Copyright 2017 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package gpiostream defines digital streams.
//
// Warning
//
// This package is still in flux as development is on-going.
package gpiostream
import (
"fmt"
"time"
"periph.io/x/periph/conn/gpio"
"periph.io/x/periph/conn/physic"
"periph.io/x/periph/conn/pin"
)
// Stream is the interface to define a generic stream.
type Stream interface {
// Frequency is the minimum data rate at which the binary stream is usable.
//
// For example, a bit stream may have a 10kHz data rate.
Frequency() physic.Frequency
// Duration of the binary stream. For infinitely looping streams, it is the
// duration of the non-looping part.
Duration() time.Duration
}
// BitStream is a stream of bits to be written or read.
type BitStream struct {
// Bits is a densely packed bitstream.
//
// The stream is required to be a multiple of 8 samples.
Bits []byte
// Freq is the rate at each the bit (not byte) stream should be processed.
Freq physic.Frequency
// LSBF when true means than Bits is in LSB-first. When false, the data is
// MSB-first.
//
// With MSBF, the first bit processed is the most significant one (0x80). For
// example, I²C, I2S PCM and SPI use MSB-first at the word level. This
// requires to pack words correctly.
//
// With LSBF, the first bit processed is the least significant one (0x01).
// For example, Ethernet uses LSB-first at the byte level and MSB-first at
// the word level.
LSBF bool
}
// Frequency implements Stream.
func (b *BitStream) Frequency() physic.Frequency {
return b.Freq
}
// Duration implements Stream.
func (b *BitStream) Duration() time.Duration {
if b.Freq == 0 {
return 0
}
return b.Freq.Period() * time.Duration(len(b.Bits)*8)
}
// GoString implements fmt.GoStringer.
func (b *BitStream) GoString() string {
return fmt.Sprintf("&gpiostream.BitStream{Bits: %x, Freq:%s, LSBF:%t}", b.Bits, b.Freq, b.LSBF)
}
// EdgeStream is a stream of edges to be written.
//
// This struct is more efficient than BitStream for short repetitive pulses,
// like controlling a servo. A PWM can be created by specifying a slice of
// twice the same resolution and make it looping via a Program.
type EdgeStream struct {
// Edges is the list of Level change. It is assumed that the signal starts
// with gpio.High. Use a duration of 0 for Edges[0] to start with a Low
// instead of the default High.
//
// The value is a multiple of Res. Use a 0 value to 'extend' a continuous
// signal that lasts more than "2^16-1*Res" duration by skipping a pulse.
Edges []uint16
// Res is the minimum resolution at which the edges should be
// rasterized.
//
// The lower the value, the more memory shall be used when rasterized.
Freq physic.Frequency
}
// Frequency implements Stream.
func (e *EdgeStream) Frequency() physic.Frequency {
return e.Freq
}
// Duration implements Stream.
func (e *EdgeStream) Duration() time.Duration {
if e.Freq == 0 {
return 0
}
t := 0
for _, edge := range e.Edges {
t += int(edge)
}
return e.Freq.Period() * time.Duration(t)
}
// Program is a loop of streams.
//
// This is itself a stream, it can be used to reduce memory usage when repeated
// patterns are used.
type Program struct {
Parts []Stream // Each part must be a BitStream, EdgeStream or Program
Loops int // Set to -1 to create an infinite loop
}
// Frequency implements Stream.
func (p *Program) Frequency() physic.Frequency {
if p.Loops == 0 {
return 0
}
var buf [16]physic.Frequency
freqs := buf[:0]
for _, part := range p.Parts {
if f := part.Frequency(); f != 0 {
freqs = insertFreq(freqs, f)
}
}
if len(freqs) == 0 {
return 0
}
f := freqs[0]
for i := 1; i < len(freqs); i++ {
if r := freqs[i]; r*2 < f {
break
}
// Take in account Nyquist rate. https://wikipedia.org/wiki/Nyquist_rate
f *= 2
}
return f
}
// Duration implements Stream.
func (p *Program) Duration() time.Duration {
if p.Loops == 0 {
return 0
}
var d time.Duration
for _, s := range p.Parts {
d += s.Duration()
}
if p.Loops > 1 {
d *= time.Duration(p.Loops)
}
return d
}
//
// PinIn allows to read a bit stream from a pin.
//
// Caveat
//
// This interface doesn't enable sampling multiple pins in a
// synchronized way or reading in a continuous uninterrupted way. As such, it
// should be considered experimental.
type PinIn interface {
pin.Pin
// StreamIn reads for the pin at the specified resolution to fill the
// provided buffer.
//
// May only support a subset of the structs implementing Stream.
StreamIn(p gpio.Pull, b Stream) error
}
// PinOut allows to stream to a pin.
//
// The Stream may be a Program, a BitStream or an EdgeStream. If it is a
// Program that is an infinite loop, a separate goroutine can be used to cancel
// the program. In this case StreamOut() returns without an error.
//
// Caveat
//
// This interface doesn't enable streaming to multiple pins in a
// synchronized way or reading in a continuous uninterrupted way. As such, it
// should be considered experimental.
type PinOut interface {
pin.Pin
StreamOut(s Stream) error
}
//
// insertFreq inserts in reverse order, highest frequency first.
func insertFreq(l []physic.Frequency, f physic.Frequency) []physic.Frequency {
i := search(len(l), func(i int) bool { return l[i] < f })
l = append(l, 0)
copy(l[i+1:], l[i:])
l[i] = f
return l
}
// search implements the same algorithm as sort.Search().
//
// It was extracted to to not depend on sort, which depends on reflect.
func search(n int, f func(int) bool) int {
lo := 0
for hi := n; lo < hi; {
if i := int(uint(lo+hi) >> 1); !f(i) {
lo = i + 1
} else {
hi = i
}
}
return lo
}
var _ Stream = &BitStream{}
var _ Stream = &EdgeStream{}
var _ Stream = &Program{}