First implementation

This commit is contained in:
2019-12-14 11:56:22 +01:00
parent a13838dbc5
commit be6a9c6f73
1060 changed files with 326870 additions and 0 deletions

103
vendor/periph.io/x/periph/conn/conn.go generated vendored Normal file
View File

@ -0,0 +1,103 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package conn
import "strconv"
// Resource is a basic resource (like a gpio pin) or a device.
type Resource interface {
// String returns a human readable identifier representing this resource in a
// descriptive way for the user. It is the same signature as fmt.Stringer.
String() string
// Halt stops the resource.
//
// Unlike a Conn, a Resource may not be closable, On the other hand, a
// resource can be halted. What halting entails depends on the resource
// device but it should stop motion, sensing loop, light emission or PWM
// output and go back into an inert state.
Halt() error
}
// Duplex declares whether communication can happen simultaneously both ways.
//
// Some protocol can be either depending on configuration settings, like UART.
type Duplex int
const (
// DuplexUnknown is used when the duplex of a connection is yet to be known.
//
// Some protocol can be configured either as half-duplex or full-duplex and
// the connection is not yet is a determinate state.
DuplexUnknown Duplex = 0
// Half means that communication can only occurs one way at a time.
//
// Examples include 1-wire and I²C.
Half Duplex = 1
// Full means that communication occurs simultaneously both ways in a
// synchronized manner.
//
// Examples include SPI (except 3-wire variant).
Full Duplex = 2
)
const duplexName = "DuplexUnknownHalfFull"
var duplexIndex = [...]uint8{0, 13, 17, 21}
func (i Duplex) String() string {
if i < 0 || i >= Duplex(len(duplexIndex)-1) {
return "Duplex(" + strconv.Itoa(int(i)) + ")"
}
return duplexName[duplexIndex[i]:duplexIndex[i+1]]
}
// Conn defines the interface for a connection on a point-to-point
// communication channel.
//
// The connection can either be unidirectional (read-only, write-only) or
// bidirectional (read-write). It can either be half-duplex or full duplex.
//
// This is the lowest common denominator for all point-to-point communication
// channels.
//
// Implementation are expected but not required to also implement the following
// interfaces:
//
// - fmt.Stringer which returns something meaningful to the user like "SPI0.1",
// "I2C1.76", "COM6", etc.
//
// - io.Reader and io.Writer as a way to use io.Copy() for half duplex
// operation.
//
// - io.Closer for the owner of the communication channel.
type Conn interface {
String() string
// Tx does a single transaction.
//
// For full duplex protocols (generally SPI, UART), the two buffers must have
// the same length as both reading and writing happen simultaneously.
//
// For half duplex protocols (I²C), there is no restriction as reading
// happens after writing, and r can be nil.
//
// Query Limits.MaxTxSize() to know if there is a limit on the buffer size
// per Tx() call.
Tx(w, r []byte) error
// Duplex returns the current duplex setting for this point-to-point
// connection.
//
// It is expected to be either Half or Full unless the connection itself is
// in an unknown state.
Duplex() Duplex
}
// Limits returns information about the connection's limits.
type Limits interface {
// MaxTxSize returns the maximum allowed data size to be sent as a single
// I/O.
//
// Returns 0 if undefined.
MaxTxSize() int
}

63
vendor/periph.io/x/periph/conn/doc.go generated vendored Normal file
View File

@ -0,0 +1,63 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package conn defines core interfaces for protocols and connections.
//
// This package and its subpackages describe the base interfaces to connect the
// software with the real world. It doesn't contain any implementation but
// includes registries to enable the application to discover the available
// hardware.
//
// Concepts
//
// periph uses 3 layered concepts for interfacing:
//
// Bus → Port → Conn
//
// Not every subpackage expose all 3 concepts. In fact, most packages don't.
// For example, SPI doesn't expose Bus as the OSes generally only expose the
// Port, that is, a Chip Select (CS) line must be selected right upfront to get
// an handle. For I²C, there's no Port to configure, so selecting a "slave"
// address is sufficient to jump directly from a Bus to a Conn.
//
// periph doesn't have yet a concept of star-like communication network, like
// an IP network.
//
// Bus
//
// A Bus is a multi-point communication channel where one "master" and multiple
// "slaves" communicate together. In the case of periph, the Bus handle is
// assumed to be the "master". The "master" generally initiates communications
// and selects the "slave" to talk to.
//
// As the "master" selects a "slave" over a bus, a virtual Port is
// automatically created.
//
// Examples include SPI, I²C and 1-wire. In each case, selecting a
// communication line (Chip Select (CS) line for SPI, address for I²C or
// 1-wire) converts the Bus into a Port.
//
// Port
//
// A port is a point-to-point communication channel that is yet to be
// initialized. It cannot be used for communication until it is connected and
// transformed into a Conn. Configuring a Port converts it into a Conn. Not all
// Port need configuration.
//
// Conn
//
// A Conn is a fully configured half or full duplex communication channel that
// is point-to-point, only between two devices. It is ready to use like any
// readable and/or writable pipe.
//
// Subpackages
//
// Most connection-type specific subpackages include subpackages:
//
// → XXXreg: registry as that is populated by the host drivers and that can be
// leveraged by applications.
//
// → XXXtest: fake implementation that can be leveraged when writing device
// driver unit test.
package conn

3
vendor/periph.io/x/periph/conn/duplex_string.go generated vendored Normal file
View File

@ -0,0 +1,3 @@
// Code generated by "stringer -type Duplex"; DO NOT EDIT
package conn

26
vendor/periph.io/x/periph/conn/gpio/func.go generated vendored Normal file
View File

@ -0,0 +1,26 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package gpio
import "periph.io/x/periph/conn/pin"
// Well known pin functionality.
const (
// Inputs
IN pin.Func = "IN" // Input
IN_HIGH pin.Func = "In/High" // Read high
IN_LOW pin.Func = "In/Low" // Read low
// Outputs
OUT pin.Func = "OUT" // Output, drive
OUT_OC pin.Func = "OUT_OPEN" // Output, open collector/drain
OUT_HIGH pin.Func = "Out/High" // Drive high
OUT_LOW pin.Func = "Out/Low" // Drive low; open collector low
FLOAT pin.Func = "FLOAT" // Input float or Output open collector high
CLK pin.Func = "CLK" // Clock is a subset of a PWM, with a 50% duty cycle
PWM pin.Func = "PWM" // Pulse Width Modulation, which is a clock with variable duty cycle
)

329
vendor/periph.io/x/periph/conn/gpio/gpio.go generated vendored Normal file
View File

@ -0,0 +1,329 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package gpio defines digital pins.
//
// All GPIO implementations are expected to implement PinIO but the device
// driver may accept a more specific one like PinIn or PinOut.
package gpio
import (
"errors"
"strconv"
"strings"
"time"
"periph.io/x/periph/conn/physic"
"periph.io/x/periph/conn/pin"
)
// Interfaces
// Level is the level of the pin: Low or High.
type Level bool
const (
// Low represents 0v.
Low Level = false
// High represents Vin, generally 3.3v or 5v.
High Level = true
)
func (l Level) String() string {
if l == Low {
return "Low"
}
return "High"
}
// Pull specifies the internal pull-up or pull-down for a pin set as input.
type Pull uint8
// Acceptable pull values.
const (
PullNoChange Pull = 0 // Do not change the previous pull resistor setting or an unknown value
Float Pull = 1 // Let the input float
PullDown Pull = 2 // Apply pull-down
PullUp Pull = 3 // Apply pull-up
)
const pullName = "PullNoChangeFloatPullDownPullUp"
var pullIndex = [...]uint8{0, 12, 17, 25, 31}
func (i Pull) String() string {
if i >= Pull(len(pullIndex)-1) {
return "Pull(" + strconv.Itoa(int(i)) + ")"
}
return pullName[pullIndex[i]:pullIndex[i+1]]
}
// Edge specifies if an input pin should have edge detection enabled.
//
// Only enable it when needed, since this causes system interrupts.
type Edge int
// Acceptable edge detection values.
const (
NoEdge Edge = 0
RisingEdge Edge = 1
FallingEdge Edge = 2
BothEdges Edge = 3
)
const edgeName = "NoEdgeRisingEdgeFallingEdgeBothEdges"
var edgeIndex = [...]uint8{0, 6, 16, 27, 36}
func (i Edge) String() string {
if i >= Edge(len(edgeIndex)-1) {
return "Edge(" + strconv.Itoa(int(i)) + ")"
}
return edgeName[edgeIndex[i]:edgeIndex[i+1]]
}
const (
// DutyMax is a duty cycle of 100%.
DutyMax Duty = 1 << 24
// DutyHalf is a 50% duty PWM, which boils down to a normal clock.
DutyHalf Duty = DutyMax / 2
)
// Duty is the duty cycle for a PWM.
//
// Valid values are between 0 and DutyMax.
type Duty int32
func (d Duty) String() string {
// TODO(maruel): Implement one fractional number.
return strconv.Itoa(int((d+50)/(DutyMax/100))) + "%"
}
// Valid returns true if the Duty cycle value is valid.
func (d Duty) Valid() bool {
return d >= 0 && d <= DutyMax
}
// ParseDuty parses a string and converts it to a Duty value.
func ParseDuty(s string) (Duty, error) {
percent := strings.HasSuffix(s, "%")
if percent {
s = s[:len(s)-1]
}
i64, err := strconv.ParseInt(s, 10, 32)
if err != nil {
return 0, err
}
i := Duty(i64)
if percent {
// TODO(maruel): Add support for fractional number.
if i < 0 {
return 0, errors.New("duty must be >= 0%")
}
if i > 100 {
return 0, errors.New("duty must be <= 100%")
}
return ((i * DutyMax) + 49) / 100, nil
}
if i < 0 {
return 0, errors.New("duty must be >= 0")
}
if i > DutyMax {
return 0, errors.New("duty must be <= " + strconv.Itoa(int(DutyMax)))
}
return i, nil
}
// PinIn is an input GPIO pin.
//
// It may optionally support internal pull resistor and edge based triggering.
//
// A button is semantically a PinIn. So if you are looking to read from a
// button, PinIn is the interface you are looking for.
type PinIn interface {
pin.Pin
// In setups a pin as an input.
//
// If WaitForEdge() is planned to be called, make sure to use one of the Edge
// value. Otherwise, use NoEdge to not generated unneeded hardware interrupts.
//
// Calling In() will try to empty the accumulated edges but it cannot be 100%
// reliable due to the OS (linux) and its driver. It is possible that on a
// gpio that is as input, doing a quick Out(), In() may return an edge that
// occurred before the Out() call.
In(pull Pull, edge Edge) error
// Read return the current pin level.
//
// Behavior is undefined if In() wasn't used before.
//
// In some rare case, it is possible that Read() fails silently. This happens
// if another process on the host messes up with the pin after In() was
// called. In this case, call In() again.
Read() Level
// WaitForEdge() waits for the next edge or immediately return if an edge
// occurred since the last call.
//
// Only waits for the kind of edge as specified in a previous In() call.
// Behavior is undefined if In() with a value other than NoEdge wasn't called
// before.
//
// Returns true if an edge was detected during or before this call. Return
// false if the timeout occurred or In() was called while waiting, causing the
// function to exit.
//
// Multiple edges may or may not accumulate between two calls to
// WaitForEdge(). The behavior in this case is undefined and is OS driver
// specific.
//
// It is not required to call Read() to reset the edge detection.
//
// Specify -1 to effectively disable timeout.
WaitForEdge(timeout time.Duration) bool
// Pull returns the internal pull resistor if the pin is set as input pin.
//
// Returns PullNoChange if the value cannot be read.
Pull() Pull
// DefaultPull returns the pull that is initialized on CPU/device reset. This
// is useful to determine if the pin is acceptable for operation with
// certain devices.
DefaultPull() Pull
}
// PinOut is an output GPIO pin.
//
// A LED, a buzzer, a servo, are semantically a PinOut. So if you are looking
// to control these, PinOut is the interface you are looking for.
type PinOut interface {
pin.Pin
// Out sets a pin as output if it wasn't already and sets the initial value.
//
// After the initial call to ensure that the pin has been set as output, it
// is generally safe to ignore the error returned.
//
// Out() tries to empty the accumulated edges detected if the gpio was
// previously set as input but this is not 100% guaranteed due to the OS.
Out(l Level) error
// PWM sets the PWM output on supported pins, if the pin has hardware PWM
// support.
//
// To use as a general purpose clock, set duty to DutyHalf. Some pins may
// only support DutyHalf and no other value.
//
// Using 0 as frequency will use the optimal value as supported/preferred by
// the pin.
//
// To use as a servo, see https://en.wikipedia.org/wiki/Servo_control as an
// explanation how to calculate duty.
PWM(duty Duty, f physic.Frequency) error
}
// PinIO is a GPIO pin that supports both input and output. It matches both
// interfaces PinIn and PinOut.
//
// A GPIO pin implementing PinIO may fail at either input or output or both.
type PinIO interface {
pin.Pin
// PinIn
In(pull Pull, edge Edge) error
Read() Level
WaitForEdge(timeout time.Duration) bool
Pull() Pull
DefaultPull() Pull
// PinOut
Out(l Level) error
PWM(duty Duty, f physic.Frequency) error
}
// INVALID implements PinIO and fails on all access.
var INVALID PinIO
// RealPin is implemented by aliased pin and allows the retrieval of the real
// pin underlying an alias.
//
// Aliases are created by RegisterAlias. Aliases permits presenting a user
// friendly GPIO pin name while representing the underlying real pin.
//
// The purpose of the RealPin is to be able to cleanly test whether an arbitrary
// gpio.PinIO returned by ByName is an alias for another pin, and resolve it.
type RealPin interface {
Real() PinIO // Real returns the real pin behind an Alias
}
//
// errInvalidPin is returned when trying to use INVALID.
var errInvalidPin = errors.New("gpio: invalid pin")
func init() {
INVALID = invalidPin{}
}
// invalidPin implements PinIO for compatibility but fails on all access.
type invalidPin struct {
}
func (invalidPin) String() string {
return "INVALID"
}
func (invalidPin) Halt() error {
return nil
}
func (invalidPin) Number() int {
return -1
}
func (invalidPin) Name() string {
return "INVALID"
}
func (invalidPin) Function() string {
return ""
}
func (invalidPin) Func() pin.Func {
return pin.FuncNone
}
func (invalidPin) SupportedFuncs() []pin.Func {
return nil
}
func (invalidPin) SetFunc(f pin.Func) error {
return errInvalidPin
}
func (invalidPin) In(Pull, Edge) error {
return errInvalidPin
}
func (invalidPin) Read() Level {
return Low
}
func (invalidPin) WaitForEdge(timeout time.Duration) bool {
return false
}
func (invalidPin) Pull() Pull {
return PullNoChange
}
func (invalidPin) DefaultPull() Pull {
return PullNoChange
}
func (invalidPin) Out(Level) error {
return errInvalidPin
}
func (invalidPin) PWM(Duty, physic.Frequency) error {
return errInvalidPin
}
var _ PinIn = INVALID
var _ PinOut = INVALID
var _ PinIO = INVALID
var _ pin.PinFunc = &invalidPin{}

213
vendor/periph.io/x/periph/conn/gpio/gpioreg/gpioreg.go generated vendored Normal file
View File

@ -0,0 +1,213 @@
// Copyright 2017 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package gpioreg defines a registry for the known digital pins.
package gpioreg
import (
"errors"
"strconv"
"sync"
"periph.io/x/periph/conn/gpio"
)
// ByName returns a GPIO pin from its name, gpio number or one of its aliases.
//
// For example on a Raspberry Pi, the following values will return the same
// GPIO: the gpio as a number "2", the chipset name "GPIO2", the board pin
// position "P1_3", it's function name "I2C1_SDA".
//
// Returns nil if the gpio pin is not present.
func ByName(name string) gpio.PinIO {
mu.Lock()
defer mu.Unlock()
if p, ok := byName[name]; ok {
return p
}
if dest, ok := byAlias[name]; ok {
if p := getByNameDeep(dest); p != nil {
// Wraps the destination in an alias, so the name makes sense to the user.
// The main drawback is that casting into other gpio interfaces like
// gpio.PinPWM requires going through gpio.RealPin first.
return &pinAlias{p, name}
}
}
return nil
}
// All returns all the GPIO pins available on this host.
//
// The list is guaranteed to be in order of name using 'natural sorting'.
//
// This list excludes aliases.
//
// This list excludes non-GPIO pins like GROUND, V3_3, etc, since they are not
// GPIO.
func All() []gpio.PinIO {
mu.Lock()
defer mu.Unlock()
out := make([]gpio.PinIO, 0, len(byName))
for _, p := range byName {
out = insertPinByName(out, p)
}
return out
}
// Aliases returns all pin aliases.
//
// The list is guaranteed to be in order of aliase name.
func Aliases() []gpio.PinIO {
mu.Lock()
defer mu.Unlock()
out := make([]gpio.PinIO, 0, len(byAlias))
for name, dest := range byAlias {
// Skip aliases that were not resolved.
if p := getByNameDeep(dest); p != nil {
out = insertPinByName(out, &pinAlias{p, name})
}
}
return out
}
// Register registers a GPIO pin.
//
// Registering the same pin number or name twice is an error.
//
// The pin registered cannot implement the interface RealPin.
func Register(p gpio.PinIO) error {
name := p.Name()
if len(name) == 0 {
return errors.New("gpioreg: can't register a pin with no name")
}
if r, ok := p.(gpio.RealPin); ok {
return errors.New("gpioreg: can't register pin " + strconv.Quote(name) + ", it is already an alias to " + strconv.Quote(r.Real().String()))
}
mu.Lock()
defer mu.Unlock()
if orig, ok := byName[name]; ok {
return errors.New("gpioreg: can't register pin " + strconv.Quote(name) + " twice; already registered as " + strconv.Quote(orig.String()))
}
if dest, ok := byAlias[name]; ok {
return errors.New("gpioreg: can't register pin " + strconv.Quote(name) + "; an alias already exist to: " + strconv.Quote(dest))
}
byName[name] = p
return nil
}
// RegisterAlias registers an alias for a GPIO pin.
//
// It is possible to register an alias for a pin that itself has not been
// registered yet. It is valid to register an alias to another alias. It is
// valid to register the same alias multiple times, overriding the previous
// alias.
func RegisterAlias(alias string, dest string) error {
if len(alias) == 0 {
return errors.New("gpioreg: can't register an alias with no name")
}
if len(dest) == 0 {
return errors.New("gpioreg: can't register alias " + strconv.Quote(alias) + " with no dest")
}
mu.Lock()
defer mu.Unlock()
if _, ok := byName[alias]; ok {
return errors.New("gpioreg: can't register alias " + strconv.Quote(alias) + " for a pin that exists")
}
byAlias[alias] = dest
return nil
}
// Unregister removes a previously registered GPIO pin or alias from the GPIO
// pin registry.
//
// This can happen when a GPIO pin is exposed via an USB device and the device
// is unplugged, or when a generic OS provided pin is superseded by a CPU
// specific implementation.
func Unregister(name string) error {
mu.Lock()
defer mu.Unlock()
if _, ok := byName[name]; ok {
delete(byName, name)
return nil
}
if _, ok := byAlias[name]; ok {
delete(byAlias, name)
return nil
}
return errors.New("gpioreg: can't unregister unknown pin name " + strconv.Quote(name))
}
//
var (
mu sync.Mutex
byName = map[string]gpio.PinIO{}
byAlias = map[string]string{}
)
// pinAlias implements an alias for a PinIO.
//
// pinAlias implements the RealPin interface, which allows querying for the
// real pin under the alias.
type pinAlias struct {
gpio.PinIO
name string
}
// String returns the alias name along the real pin's Name() in parenthesis, if
// known, else the real pin's number.
func (a *pinAlias) String() string {
return a.name + "(" + a.PinIO.Name() + ")"
}
// Name returns the pinAlias's name.
func (a *pinAlias) Name() string {
return a.name
}
// Real returns the real pin behind the alias
func (a *pinAlias) Real() gpio.PinIO {
return a.PinIO
}
// getByNameDeep recursively resolves the aliases to get the pin.
func getByNameDeep(name string) gpio.PinIO {
if p, ok := byName[name]; ok {
return p
}
if dest, ok := byAlias[name]; ok {
if p := getByNameDeep(dest); p != nil {
// Return the deep pin directly, bypassing the aliases.
return p
}
}
return nil
}
// insertPinByName inserts pin p into list l while keeping l ordered by name.
func insertPinByName(l []gpio.PinIO, p gpio.PinIO) []gpio.PinIO {
n := p.Name()
i := search(len(l), func(i int) bool { return lessNatural(n, l[i].Name()) })
l = append(l, nil)
copy(l[i+1:], l[i:])
l[i] = p
return l
}
// search implements the same algorithm as sort.Search().
//
// It was extracted to to not depend on sort, which depends on reflect.
func search(n int, f func(int) bool) int {
lo := 0
for hi := n; lo < hi; {
if i := int(uint(lo+hi) >> 1); !f(i) {
lo = i + 1
} else {
hi = i
}
}
return lo
}

76
vendor/periph.io/x/periph/conn/gpio/gpioreg/natsort.go generated vendored Normal file
View File

@ -0,0 +1,76 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package gpioreg
import (
"strconv"
)
// lessNatural does a 'natural' comparison on the two strings.
//
// It is extracted from https://github.com/maruel/natural.
func lessNatural(a, b string) bool {
for {
if a == b {
return false
}
if p := commonPrefix(a, b); p != 0 {
a = a[p:]
b = b[p:]
}
if ia := digits(a); ia > 0 {
if ib := digits(b); ib > 0 {
// Both sides have digits.
an, aerr := strconv.ParseUint(a[:ia], 10, 64)
bn, berr := strconv.ParseUint(b[:ib], 10, 64)
if aerr == nil && berr == nil {
if an != bn {
return an < bn
}
// Semantically the same digits, e.g. "00" == "0", "01" == "1". In
// this case, only continue processing if there's trailing data on
// both sides, otherwise do lexical comparison.
if ia != len(a) && ib != len(b) {
a = a[ia:]
b = b[ib:]
continue
}
}
}
}
return a < b
}
}
// commonPrefix returns the common prefix except for digits.
func commonPrefix(a, b string) int {
m := len(a)
if n := len(b); n < m {
m = n
}
if m == 0 {
return 0
}
_ = a[m-1]
_ = b[m-1]
for i := 0; i < m; i++ {
ca := a[i]
cb := b[i]
if (ca >= '0' && ca <= '9') || (cb >= '0' && cb <= '9') || ca != cb {
return i
}
}
return m
}
func digits(s string) int {
for i := 0; i < len(s); i++ {
c := s[i]
if c < '0' || c > '9' {
return i
}
}
return len(s)
}

View File

@ -0,0 +1,220 @@
// Copyright 2017 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package gpiostream defines digital streams.
//
// Warning
//
// This package is still in flux as development is on-going.
package gpiostream
import (
"fmt"
"time"
"periph.io/x/periph/conn/gpio"
"periph.io/x/periph/conn/physic"
"periph.io/x/periph/conn/pin"
)
// Stream is the interface to define a generic stream.
type Stream interface {
// Frequency is the minimum data rate at which the binary stream is usable.
//
// For example, a bit stream may have a 10kHz data rate.
Frequency() physic.Frequency
// Duration of the binary stream. For infinitely looping streams, it is the
// duration of the non-looping part.
Duration() time.Duration
}
// BitStream is a stream of bits to be written or read.
type BitStream struct {
// Bits is a densely packed bitstream.
//
// The stream is required to be a multiple of 8 samples.
Bits []byte
// Freq is the rate at each the bit (not byte) stream should be processed.
Freq physic.Frequency
// LSBF when true means than Bits is in LSB-first. When false, the data is
// MSB-first.
//
// With MSBF, the first bit processed is the most significant one (0x80). For
// example, I²C, I2S PCM and SPI use MSB-first at the word level. This
// requires to pack words correctly.
//
// With LSBF, the first bit processed is the least significant one (0x01).
// For example, Ethernet uses LSB-first at the byte level and MSB-first at
// the word level.
LSBF bool
}
// Frequency implements Stream.
func (b *BitStream) Frequency() physic.Frequency {
return b.Freq
}
// Duration implements Stream.
func (b *BitStream) Duration() time.Duration {
if b.Freq == 0 {
return 0
}
return b.Freq.Period() * time.Duration(len(b.Bits)*8)
}
// GoString implements fmt.GoStringer.
func (b *BitStream) GoString() string {
return fmt.Sprintf("&gpiostream.BitStream{Bits: %x, Freq:%s, LSBF:%t}", b.Bits, b.Freq, b.LSBF)
}
// EdgeStream is a stream of edges to be written.
//
// This struct is more efficient than BitStream for short repetitive pulses,
// like controlling a servo. A PWM can be created by specifying a slice of
// twice the same resolution and make it looping via a Program.
type EdgeStream struct {
// Edges is the list of Level change. It is assumed that the signal starts
// with gpio.High. Use a duration of 0 for Edges[0] to start with a Low
// instead of the default High.
//
// The value is a multiple of Res. Use a 0 value to 'extend' a continuous
// signal that lasts more than "2^16-1*Res" duration by skipping a pulse.
Edges []uint16
// Res is the minimum resolution at which the edges should be
// rasterized.
//
// The lower the value, the more memory shall be used when rasterized.
Freq physic.Frequency
}
// Frequency implements Stream.
func (e *EdgeStream) Frequency() physic.Frequency {
return e.Freq
}
// Duration implements Stream.
func (e *EdgeStream) Duration() time.Duration {
if e.Freq == 0 {
return 0
}
t := 0
for _, edge := range e.Edges {
t += int(edge)
}
return e.Freq.Period() * time.Duration(t)
}
// Program is a loop of streams.
//
// This is itself a stream, it can be used to reduce memory usage when repeated
// patterns are used.
type Program struct {
Parts []Stream // Each part must be a BitStream, EdgeStream or Program
Loops int // Set to -1 to create an infinite loop
}
// Frequency implements Stream.
func (p *Program) Frequency() physic.Frequency {
if p.Loops == 0 {
return 0
}
var buf [16]physic.Frequency
freqs := buf[:0]
for _, part := range p.Parts {
if f := part.Frequency(); f != 0 {
freqs = insertFreq(freqs, f)
}
}
if len(freqs) == 0 {
return 0
}
f := freqs[0]
for i := 1; i < len(freqs); i++ {
if r := freqs[i]; r*2 < f {
break
}
// Take in account Nyquist rate. https://wikipedia.org/wiki/Nyquist_rate
f *= 2
}
return f
}
// Duration implements Stream.
func (p *Program) Duration() time.Duration {
if p.Loops == 0 {
return 0
}
var d time.Duration
for _, s := range p.Parts {
d += s.Duration()
}
if p.Loops > 1 {
d *= time.Duration(p.Loops)
}
return d
}
//
// PinIn allows to read a bit stream from a pin.
//
// Caveat
//
// This interface doesn't enable sampling multiple pins in a
// synchronized way or reading in a continuous uninterrupted way. As such, it
// should be considered experimental.
type PinIn interface {
pin.Pin
// StreamIn reads for the pin at the specified resolution to fill the
// provided buffer.
//
// May only support a subset of the structs implementing Stream.
StreamIn(p gpio.Pull, b Stream) error
}
// PinOut allows to stream to a pin.
//
// The Stream may be a Program, a BitStream or an EdgeStream. If it is a
// Program that is an infinite loop, a separate goroutine can be used to cancel
// the program. In this case StreamOut() returns without an error.
//
// Caveat
//
// This interface doesn't enable streaming to multiple pins in a
// synchronized way or reading in a continuous uninterrupted way. As such, it
// should be considered experimental.
type PinOut interface {
pin.Pin
StreamOut(s Stream) error
}
//
// insertFreq inserts in reverse order, highest frequency first.
func insertFreq(l []physic.Frequency, f physic.Frequency) []physic.Frequency {
i := search(len(l), func(i int) bool { return l[i] < f })
l = append(l, 0)
copy(l[i+1:], l[i:])
l[i] = f
return l
}
// search implements the same algorithm as sort.Search().
//
// It was extracted to to not depend on sort, which depends on reflect.
func search(n int, f func(int) bool) int {
lo := 0
for hi := n; lo < hi; {
if i := int(uint(lo+hi) >> 1); !f(i) {
lo = i + 1
} else {
hi = i
}
}
return lo
}
var _ Stream = &BitStream{}
var _ Stream = &EdgeStream{}
var _ Stream = &Program{}

13
vendor/periph.io/x/periph/conn/i2c/func.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package i2c
import "periph.io/x/periph/conn/pin"
// Well known pin functionality.
const (
SCL pin.Func = "I2C_SCL" // Clock
SDA pin.Func = "I2C_SDA" // Data
)

135
vendor/periph.io/x/periph/conn/i2c/i2c.go generated vendored Normal file
View File

@ -0,0 +1,135 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package i2c defines the API to communicate with devices over the I²C
// protocol.
//
// As described in https://periph.io/x/periph/conn#hdr-Concepts, periph.io uses
// the concepts of Bus, Port and Conn.
//
// In the package i2c, 'Port' is not exposed, since once you know the I²C
// device address, there's no unconfigured Port to configure.
//
// Instead, the package includes the adapter 'Dev' to directly convert an I²C
// bus 'i2c.Bus' into a connection 'conn.Conn' by only specifying the device
// I²C address.
//
// See https://en.wikipedia.org/wiki/I%C2%B2C for more information.
package i2c
import (
"errors"
"io"
"strconv"
"periph.io/x/periph/conn"
"periph.io/x/periph/conn/gpio"
"periph.io/x/periph/conn/physic"
)
// Bus defines the interface a concrete I²C driver must implement.
//
// This interface is consummed by a device driver for a device sitting on a bus.
//
// This interface doesn't implement conn.Conn since a device address must be
// specified. Use i2cdev.Dev as an adapter to get a conn.Conn compatible
// object.
type Bus interface {
String() string
// Tx does a transaction at the specified device address.
//
// Write is done first, then read. One of 'w' or 'r' can be omitted for a
// unidirectional operation.
Tx(addr uint16, w, r []byte) error
// SetSpeed changes the bus speed, if supported.
//
// On linux due to the way the I²C sysfs driver is exposed in userland,
// calling this function will likely affect *all* I²C buses on the host.
SetSpeed(f physic.Frequency) error
}
// BusCloser is an I²C bus that can be closed.
//
// This interface is meant to be handled by the application and not the device
// driver. A device driver doesn't "own" a bus, hence it must operate on a Bus,
// not a BusCloser.
type BusCloser interface {
io.Closer
Bus
}
// Pins defines the pins that an I²C bus interconnect is using on the host.
//
// It is expected that a implementer of Bus also implement Pins but this is not
// a requirement.
type Pins interface {
// SCL returns the CLK (clock) pin.
SCL() gpio.PinIO
// SDA returns the DATA pin.
SDA() gpio.PinIO
}
// Dev is a device on a I²C bus.
//
// It implements conn.Conn.
//
// It saves from repeatedly specifying the device address.
type Dev struct {
Bus Bus
Addr uint16
}
func (d *Dev) String() string {
s := "<nil>"
if d.Bus != nil {
s = d.Bus.String()
}
return s + "(" + strconv.Itoa(int(d.Addr)) + ")"
}
// Tx does a transaction by adding the device's address to each command.
//
// It's a wrapper for Bus.Tx().
func (d *Dev) Tx(w, r []byte) error {
return d.Bus.Tx(d.Addr, w, r)
}
// Write writes to the I²C bus without reading, implementing io.Writer.
//
// It's a wrapper for Tx()
func (d *Dev) Write(b []byte) (int, error) {
if err := d.Tx(b, nil); err != nil {
return 0, err
}
return len(b), nil
}
// Duplex always return conn.Half for I²C.
func (d *Dev) Duplex() conn.Duplex {
return conn.Half
}
// Addr is an I²C slave address.
type Addr uint16
// Set sets the Addr to a value represented by the string s. Values maybe in
// decimal or hexadecimal form. Set implements the flag.Value interface.
func (a *Addr) Set(s string) error {
// Allow for only maximum of 10 bits for i2c addresses.
u, err := strconv.ParseUint(s, 0, 10)
if err != nil {
return errI2CSetError
}
*a = Addr(u)
return nil
}
// String returns an i2c.Addr as a string formated in hexadecimal.
func (a Addr) String() string {
return "0x" + strconv.FormatInt(int64(a), 16)
}
var errI2CSetError = errors.New("invalid i2c address")
var _ conn.Conn = &Dev{}

252
vendor/periph.io/x/periph/conn/i2c/i2creg/i2creg.go generated vendored Normal file
View File

@ -0,0 +1,252 @@
// Copyright 2017 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package i2creg defines I²C bus registry to list buses present on the host.
package i2creg
import (
"errors"
"strconv"
"strings"
"sync"
"periph.io/x/periph/conn/i2c"
)
// Opener opens an handle to a bus.
//
// It is provided by the actual bus driver.
type Opener func() (i2c.BusCloser, error)
// Ref references an I²C bus.
//
// It is returned by All() to enumerate all registered buses.
type Ref struct {
// Name of the bus.
//
// It must not be a sole number. It must be unique across the host.
Name string
// Aliases are the alternative names that can be used to reference this bus.
Aliases []string
// Number of the bus or -1 if the bus doesn't have any "native" number.
//
// Buses provided by the CPU normally have a 0 based number. Buses provided
// via an addon (like over USB) generally are not numbered.
Number int
// Open is the factory to open an handle to this I²C bus.
Open Opener
}
// Open opens an I²C bus by its name, an alias or its number and returns an
// handle to it.
//
// Specify the empty string "" to get the first available bus. This is the
// recommended default value unless an application knows the exact bus to use.
//
// Each bus can register multiple aliases, each leading to the same bus handle.
//
// "Bus number" is a generic concept that is highly dependent on the platform
// and OS. On some platform, the first bus may have the number 0, 1 or higher.
// Bus numbers are not necessarily continuous and may not start at 0. It was
// observed that the bus number as reported by the OS may change across OS
// revisions.
//
// When the I²C bus is provided by an off board plug and play bus like USB via
// a FT232H USB device, there can be no associated number.
func Open(name string) (i2c.BusCloser, error) {
var r *Ref
var err error
func() {
mu.Lock()
defer mu.Unlock()
if len(byName) == 0 {
err = errors.New("i2creg: no bus found; did you forget to call Init()?")
return
}
if len(name) == 0 {
r = getDefault()
return
}
// Try by name, by alias, by number.
if r = byName[name]; r == nil {
if r = byAlias[name]; r == nil {
if i, err2 := strconv.Atoi(name); err2 == nil {
r = byNumber[i]
}
}
}
}()
if err != nil {
return nil, err
}
if r == nil {
return nil, errors.New("i2creg: can't open unknown bus: " + strconv.Quote(name))
}
return r.Open()
}
// All returns a copy of all the registered references to all know I²C buses
// available on this host.
//
// The list is sorted by the bus name.
func All() []*Ref {
mu.Lock()
defer mu.Unlock()
out := make([]*Ref, 0, len(byName))
for _, v := range byName {
r := &Ref{Name: v.Name, Aliases: make([]string, len(v.Aliases)), Number: v.Number, Open: v.Open}
copy(r.Aliases, v.Aliases)
out = insertRef(out, r)
}
return out
}
// Register registers an I²C bus.
//
// Registering the same bus name twice is an error, e.g. o.Name(). o.Number()
// can be -1 to signify that the bus doesn't have an inherent "bus number". A
// good example is a bus provided over a FT232H device connected on an USB bus.
// In this case, the bus name should be created from the serial number of the
// device for unique identification.
func Register(name string, aliases []string, number int, o Opener) error {
if len(name) == 0 {
return errors.New("i2creg: can't register a bus with no name")
}
if o == nil {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with nil Opener")
}
if number < -1 {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with invalid bus number " + strconv.Itoa(number))
}
if _, err := strconv.Atoi(name); err == nil {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with name being only a number")
}
if strings.Contains(name, ":") {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with name containing ':'")
}
for _, alias := range aliases {
if len(alias) == 0 {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with an empty alias")
}
if name == alias {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with an alias the same as the bus name")
}
if _, err := strconv.Atoi(alias); err == nil {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with an alias that is a number: " + strconv.Quote(alias))
}
if strings.Contains(alias, ":") {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " with an alias containing ':': " + strconv.Quote(alias))
}
}
mu.Lock()
defer mu.Unlock()
if _, ok := byName[name]; ok {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " twice")
}
if _, ok := byAlias[name]; ok {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " twice; it is already an alias")
}
if number != -1 {
if _, ok := byNumber[number]; ok {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + "; bus number " + strconv.Itoa(number) + " is already registered")
}
}
for _, alias := range aliases {
if _, ok := byName[alias]; ok {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " twice; alias " + strconv.Quote(alias) + " is already a bus")
}
if _, ok := byAlias[alias]; ok {
return errors.New("i2creg: can't register bus " + strconv.Quote(name) + " twice; alias " + strconv.Quote(alias) + " is already an alias")
}
}
r := &Ref{Name: name, Aliases: make([]string, len(aliases)), Number: number, Open: o}
copy(r.Aliases, aliases)
byName[name] = r
if number != -1 {
byNumber[number] = r
}
for _, alias := range aliases {
byAlias[alias] = r
}
return nil
}
// Unregister removes a previously registered I²C bus.
//
// This can happen when an I²C bus is exposed via an USB device and the device
// is unplugged.
func Unregister(name string) error {
mu.Lock()
defer mu.Unlock()
r := byName[name]
if r == nil {
return errors.New("i2creg: can't unregister unknown bus name " + strconv.Quote(name))
}
delete(byName, name)
delete(byNumber, r.Number)
for _, alias := range r.Aliases {
delete(byAlias, alias)
}
return nil
}
//
var (
mu sync.Mutex
byName = map[string]*Ref{}
// Caches
byNumber = map[int]*Ref{}
byAlias = map[string]*Ref{}
)
// getDefault returns the Ref that should be used as the default bus.
func getDefault() *Ref {
var o *Ref
if len(byNumber) == 0 {
// Fallback to use byName using a lexical sort.
name := ""
for n, o2 := range byName {
if len(name) == 0 || n < name {
o = o2
name = n
}
}
return o
}
number := int((^uint(0)) >> 1)
for n, o2 := range byNumber {
if number > n {
number = n
o = o2
}
}
return o
}
func insertRef(l []*Ref, r *Ref) []*Ref {
n := r.Name
i := search(len(l), func(i int) bool { return l[i].Name > n })
l = append(l, nil)
copy(l[i+1:], l[i:])
l[i] = r
return l
}
// search implements the same algorithm as sort.Search().
//
// It was extracted to to not depend on sort, which depends on reflect.
func search(n int, f func(int) bool) int {
lo := 0
for hi := n; lo < hi; {
if i := int(uint(lo+hi) >> 1); !f(i) {
lo = i + 1
} else {
hi = i
}
}
return lo
}

21
vendor/periph.io/x/periph/conn/physic/doc.go generated vendored Normal file
View File

@ -0,0 +1,21 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package physic declares types for physical input, outputs and measurement
// units.
//
// This includes temperature, humidity, pressure, tension, current, etc.
//
// SI units
//
// The supported S.I. units is a subset of the official ones.
// T tera 10¹² 1000000000000
// G giga 10⁹ 1000000000
// M mega 10⁶ 1000000
// k kilo 10³ 1000
// m milli 10⁻³ 0.001
// µ,u micro 10⁻⁶ 0.000001
// n nano 10⁻⁹ 0.000000001
// p pico 10⁻¹² 0.000000000001
package physic

42
vendor/periph.io/x/periph/conn/physic/physic.go generated vendored Normal file
View File

@ -0,0 +1,42 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package physic
import (
"time"
"periph.io/x/periph/conn"
)
// Env represents measurements from an environmental sensor.
type Env struct {
Temperature Temperature
Pressure Pressure
Humidity RelativeHumidity
}
// SenseEnv represents an environmental sensor.
type SenseEnv interface {
conn.Resource
// Sense returns the value read from the sensor. Unsupported metrics are not
// modified.
Sense(env *Env) error
// SenseContinuous initiates a continuous sensing at the specified interval.
//
// It is important to call Halt() once done with the sensing, which will turn
// the device off and will close the channel.
SenseContinuous(interval time.Duration) (<-chan Env, error)
// Precision returns this sensor's precision.
//
// The env values are set to the number of bits that are significant for each
// items that this sensor can measure.
//
// Precision is not accuracy. The sensor may have absolute and relative
// errors in its measurement, that are likely well above the reported
// precision. Accuracy may be improved on some sensor by using oversampling,
// or doing oversampling in software. Refer to its datasheet if available.
Precision(env *Env)
}

2254
vendor/periph.io/x/periph/conn/physic/units.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

58
vendor/periph.io/x/periph/conn/pin/func.go generated vendored Normal file
View File

@ -0,0 +1,58 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package pin
import (
"strconv"
"strings"
)
// Func is a pin function.
//
// The Func format must be "[A-Z]+", "[A-Z]+_[A-Z]+" or exceptionally
// "(In|Out)/(Low|High)".
type Func string
// FuncNone is returned by PinFunc.Func() for a Pin without an active
// functionality.
const FuncNone Func = ""
// Specialize converts a "BUS_LINE" function and appends the bug number and
// line number, to look like "BUS0_LINE1".
//
// Use -1 to not add a bus or line number.
func (f Func) Specialize(b, l int) Func {
if f == FuncNone {
return FuncNone
}
if b != -1 {
parts := strings.SplitN(string(f), "_", 2)
if len(parts) == 1 {
return FuncNone
}
f = Func(parts[0] + strconv.Itoa(b) + "_" + parts[1])
}
if l != -1 {
f += Func(strconv.Itoa(l))
}
return f
}
// Generalize is the reverse of Specialize().
func (f Func) Generalize() Func {
parts := strings.SplitN(string(f), "_", 2)
f = Func(strings.TrimRightFunc(parts[0], isNum))
if len(parts) == 2 {
f += "_"
f += Func(strings.TrimRightFunc(parts[1], isNum))
}
return f
}
//
func isNum(r rune) bool {
return r >= '0' && r <= '9'
}

139
vendor/periph.io/x/periph/conn/pin/pin.go generated vendored Normal file
View File

@ -0,0 +1,139 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package pin declare well known pins.
//
// pin is about physical pins, not about their logical function.
//
// While not a protocol strictly speaking, these are "well known constants".
package pin
import (
"errors"
"periph.io/x/periph/conn"
)
// These are well known pins.
var (
INVALID *BasicPin // Either floating or invalid pin
GROUND *BasicPin // Ground
V1_8 *BasicPin // 1.8V (filtered)
V2_8 *BasicPin // 2.8V (filtered)
V3_3 *BasicPin // 3.3V (filtered)
V5 *BasicPin // 5V (filtered)
DC_IN *BasicPin // DC IN; this is normally the 5V input
BAT_PLUS *BasicPin // LiPo Battery + connector
)
// Pin is the minimal common interface shared between gpio.PinIO and
// analog.PinIO.
type Pin interface {
conn.Resource
// Name returns the name of the pin.
Name() string
// Number returns the logical pin number or a negative number if the pin is
// not a GPIO, e.g. GROUND, V3_3, etc.
Number() int
// Function returns a user readable string representation of what the pin is
// configured to do. Common case is In and Out but it can be bus specific pin
// name.
//
// Deprecated: Use PinFunc.Func. Will be removed in v4.
Function() string
}
// PinFunc is a supplementary interface that enables specifically querying for
// the pin function.
//
// TODO(maruel): It will be merged into interface Pin for v4.
type PinFunc interface {
// Func returns the pin's current function.
//
// The returned value may be specialized or generalized, depending on the
// actual port. For example it will likely be generalized for ports served
// over USB (like a FT232H with D0 set as SPI_MOSI) but specialized for
// ports on the base board (like a RPi3 with GPIO10 set as SPI0_MOSI).
Func() Func
// SupportedFuncs returns the possible functions this pin support.
//
// Do not mutate the returned slice.
SupportedFuncs() []Func
// SetFunc sets the pin function.
//
// Example use is to reallocate a RPi3's GPIO14 active function between
// UART0_TX and UART1_TX.
SetFunc(f Func) error
}
//
// BasicPin implements Pin as a static pin.
//
// It doesn't have a usable functionality.
type BasicPin struct {
N string
}
// String implements conn.Resource.
func (b *BasicPin) String() string {
return b.N
}
// Halt implements conn.Resource.
func (b *BasicPin) Halt() error {
return nil
}
// Name implements Pin.
func (b *BasicPin) Name() string {
return b.N
}
// Number implements Pin.
//
// Returns -1 as pin number.
func (b *BasicPin) Number() int {
return -1
}
// Function implements Pin.
//
// Returns "" as pin function.
func (b *BasicPin) Function() string {
return ""
}
// Func implements PinFunc.
//
// Returns FuncNone as pin function.
func (b *BasicPin) Func() Func {
return FuncNone
}
// SupportedFuncs implements PinFunc.
//
// Returns nil.
func (b *BasicPin) SupportedFuncs() []Func {
return nil
}
// SetFunc implements PinFunc.
func (b *BasicPin) SetFunc(f Func) error {
return errors.New("pin: can't change static pin function")
}
func init() {
INVALID = &BasicPin{N: "INVALID"}
GROUND = &BasicPin{N: "GROUND"}
V1_8 = &BasicPin{N: "1.8V"}
V2_8 = &BasicPin{N: "2.8V"}
V3_3 = &BasicPin{N: "3.3V"}
V5 = &BasicPin{N: "5V"}
DC_IN = &BasicPin{N: "DC_IN"}
BAT_PLUS = &BasicPin{N: "BAT+"}
}
var _ Pin = INVALID
var _ PinFunc = INVALID

7
vendor/periph.io/x/periph/conn/pin/pinreg/doc.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package pinreg is a registry for the physical headers (made up of pins) on
// a host.
package pinreg

148
vendor/periph.io/x/periph/conn/pin/pinreg/pinreg.go generated vendored Normal file
View File

@ -0,0 +1,148 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package pinreg
import (
"errors"
"strconv"
"sync"
"periph.io/x/periph/conn/gpio"
"periph.io/x/periph/conn/gpio/gpioreg"
"periph.io/x/periph/conn/pin"
)
// All contains all the on-board headers on a micro computer.
//
// The map key is the header name, e.g. "P1" or "EULER" and the value is a
// slice of slice of pin.Pin. For a 2x20 header, it's going to be a slice of
// [20][2]pin.Pin.
func All() map[string][][]pin.Pin {
mu.Lock()
defer mu.Unlock()
out := make(map[string][][]pin.Pin, len(allHeaders))
for k, v := range allHeaders {
outV := make([][]pin.Pin, len(v))
for i, w := range v {
outW := make([]pin.Pin, len(w))
copy(outW, w)
outV[i] = outW
}
out[k] = outV
}
return out
}
// Position returns the position on a pin if found.
//
// The header and the pin number. Pin numbers are 1-based.
//
// Returns "", 0 if not connected.
func Position(p pin.Pin) (string, int) {
mu.Lock()
defer mu.Unlock()
pos, _ := byPin[realPin(p).Name()]
return pos.name, pos.number
}
// IsConnected returns true if the pin is on a header.
func IsConnected(p pin.Pin) bool {
_, i := Position(p)
return i != 0
}
// Register registers a physical header.
//
// It automatically registers all gpio pins to gpioreg.
func Register(name string, allPins [][]pin.Pin) error {
mu.Lock()
defer mu.Unlock()
if _, ok := allHeaders[name]; ok {
return errors.New("pinreg: header " + strconv.Quote(name) + " was already registered")
}
for i, line := range allPins {
for j, pin := range line {
if pin == nil || len(pin.Name()) == 0 {
return errors.New("pinreg: invalid pin on header " + name + "[" + strconv.Itoa(i+1) + "][" + strconv.Itoa(j+1) + "]")
}
}
}
allHeaders[name] = allPins
number := 1
for _, line := range allPins {
for _, p := range line {
byPin[realPin(p).Name()] = position{name, number}
number++
}
}
count := 0
for _, row := range allPins {
for _, p := range row {
count++
if _, ok := p.(gpio.PinIO); ok {
if err := gpioreg.RegisterAlias(name+"_"+strconv.Itoa(count), p.Name()); err != nil {
// Unregister as much as possible.
_ = unregister(name)
return errors.New("pinreg: " + err.Error())
}
}
}
}
return nil
}
// Unregister removes a previously registered header.
//
// This can happen when an USB device, which exposed an header, is unplugged.
// This is also useful for unit testing.
func Unregister(name string) error {
mu.Lock()
defer mu.Unlock()
return unregister(name)
}
//
type position struct {
name string // Header name
number int // Pin number
}
var (
mu sync.Mutex
allHeaders = map[string][][]pin.Pin{} // every known headers as per internal lookup table
byPin = map[string]position{} // GPIO pin name to position
)
func unregister(name string) error {
if hdr, ok := allHeaders[name]; ok {
var err error
delete(allHeaders, name)
count := 0
for _, row := range hdr {
for _, p := range row {
count++
if _, ok := p.(gpio.PinIO); ok {
if err1 := gpioreg.Unregister(name + "_" + strconv.Itoa(count)); err1 != nil && err == nil {
// Continue unregistering as much as possible.
err = errors.New("pinreg: " + err1.Error())
}
}
}
}
return err
}
return errors.New("pinreg: can't unregister unknown header name " + strconv.Quote(name))
}
// realPin returns the real pin from an alias.
func realPin(p pin.Pin) pin.Pin {
if r, ok := p.(gpio.RealPin); ok {
p = r.Real()
}
return p
}

15
vendor/periph.io/x/periph/conn/spi/func.go generated vendored Normal file
View File

@ -0,0 +1,15 @@
// Copyright 2018 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
package spi
import "periph.io/x/periph/conn/pin"
// Well known pin functionality.
const (
CLK pin.Func = "SPI_CLK" // Clock
CS pin.Func = "SPI_CS" // Chip select
MISO pin.Func = "SPI_MISO" // Master in
MOSI pin.Func = "SPI_MOSI" // Master out
)

187
vendor/periph.io/x/periph/conn/spi/spi.go generated vendored Normal file
View File

@ -0,0 +1,187 @@
// Copyright 2016 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package spi defines the API to communicate with devices over the SPI
// protocol.
//
// As described in https://periph.io/x/periph/conn#hdr-Concepts, periph.io uses
// the concepts of Bus, Port and Conn.
//
// In the package spi, 'Bus' is not exposed, as it would be SPI bus number
// without a CS line, for example on linux asking for "/dev/spi0" without the
// ".0" suffix.
//
// The OS doesn't allow that so it is counter productive to express this at the
// API layer, so 'Port' is exposed directly instead.
//
// Use Port.Connect() converts the uninitialized Port into a Conn.
//
// See https://en.wikipedia.org/wiki/Serial_Peripheral_Interface for more
// information.
package spi
import (
"io"
"strconv"
"periph.io/x/periph/conn"
"periph.io/x/periph/conn/gpio"
"periph.io/x/periph/conn/physic"
)
// Mode determines how communication is done.
//
// The bits can be OR'ed to change the parameters used for
// communication.
//
type Mode int
// Mode determines the SPI communication parameters.
//
// CPOL means the clock polarity. Idle is High when set.
//
// CPHA is the clock phase, sample on trailing edge when set.
const (
Mode0 Mode = 0x0 // CPOL=0, CPHA=0
Mode1 Mode = 0x1 // CPOL=0, CPHA=1
Mode2 Mode = 0x2 // CPOL=1, CPHA=0
Mode3 Mode = 0x3 // CPOL=1, CPHA=1
// HalfDuplex specifies that MOSI and MISO use the same wire, and that only
// one duplex is used at a time.
HalfDuplex Mode = 0x4
// NoCS request the driver to not use the CS line.
NoCS Mode = 0x8
// LSBFirst requests the words to be encoded in little endian instead of the
// default big endian.
LSBFirst = 0x10
)
func (m Mode) String() string {
s := ""
switch m & Mode3 {
case Mode0:
s = "Mode0"
case Mode1:
s = "Mode1"
case Mode2:
s = "Mode2"
case Mode3:
s = "Mode3"
}
m &^= Mode3
if m&HalfDuplex != 0 {
s += "|HalfDuplex"
}
m &^= HalfDuplex
if m&NoCS != 0 {
s += "|NoCS"
}
m &^= NoCS
if m&LSBFirst != 0 {
s += "|LSBFirst"
}
m &^= LSBFirst
if m != 0 {
s += "|0x"
s += strconv.FormatUint(uint64(m), 16)
}
return s
}
// Packet represents one packet when sending multiple packets as a transaction.
type Packet struct {
// W and R are the output and input data. When HalfDuplex is specified to
// Connect, only one of the two can be set.
W, R []byte
// BitsPerWord overrides the default bits per word value set in Connect.
BitsPerWord uint8
// KeepCS tells the driver to keep CS asserted after this packet is
// completed. This can be leveraged to create long transaction as multiple
// packets like to use 9 bits commands then 8 bits data.
//
// Normally during a spi.Conn.TxPackets() call, KeepCS should be set to true
// for all packets except the last one. If the last one is set to true, the
// CS line stays asserted, leaving the transaction hanging on the bus.
//
// KeepCS is ignored when NoCS was specified to Connect.
KeepCS bool
}
// Conn defines the interface a concrete SPI driver must implement.
//
// Implementers can optionally implement io.Writer and io.Reader for
// unidirectional operation.
type Conn interface {
conn.Conn
// TxPackets does multiple operations over the SPI connection.
//
// The maximum number of bytes can be limited depending on the driver. Query
// conn.Limits.MaxTxSize() can be used to determine the limit.
//
// If the last packet has KeepCS:true, the CS line stays asserted. This
// enables doing SPI transaction over multiple calls.
//
// Conversely, if any packet beside the last one has KeepCS:false, the CS
// line will blip for a short amount of time to force a new transaction.
//
// It was observed on RPi3 hardware to have a one clock delay between each
// packet.
TxPackets(p []Packet) error
}
// Port is the interface to be provided to device drivers.
//
// The device driver, that is the driver for the peripheral connected over
// this port, calls Connect() to retrieve a configured connection as Conn.
type Port interface {
String() string
// Connect sets the communication parameters of the connection for use by a
// device.
//
// The device driver must call this function exactly once.
//
// f must specify the maximum rated speed by the device's spec. The lowest
// speed between the port speed and the device speed is selected. Use 0 for f
// if there is no known maximum value for this device.
//
// mode specifies the clock and signal polarities, if the port is using half
// duplex (shared MISO and MOSI) or if CS is not needed.
//
// bits is the number of bits per word. Generally you should use 8.
Connect(f physic.Frequency, mode Mode, bits int) (Conn, error)
}
// PortCloser is a SPI port that can be closed.
//
// This interface is meant to be handled by the application.
type PortCloser interface {
io.Closer
Port
// LimitSpeed sets the maximum port speed.
//
// It lets an application use a device at a lower speed than the maximum
// speed as rated by the device driver. This is useful for example when the
// wires are long or the connection is of poor quality.
//
// This function can be called multiple times and resets the previous value.
// 0 is not a valid value for f. The lowest speed between the port speed and
// the device speed is selected.
LimitSpeed(f physic.Frequency) error
}
// Pins defines the pins that a SPI port interconnect is using on the host.
//
// It is expected that a implementer of ConnCloser or Conn also implement Pins
// but this is not a requirement.
type Pins interface {
// CLK returns the SCK (clock) pin.
CLK() gpio.PinOut
// MOSI returns the SDO (master out, slave in) pin.
MOSI() gpio.PinOut
// MISO returns the SDI (master in, slave out) pin.
MISO() gpio.PinIn
// CS returns the CSN (chip select) pin.
CS() gpio.PinOut
}

262
vendor/periph.io/x/periph/conn/spi/spireg/spireg.go generated vendored Normal file
View File

@ -0,0 +1,262 @@
// Copyright 2017 The Periph Authors. All rights reserved.
// Use of this source code is governed under the Apache License, Version 2.0
// that can be found in the LICENSE file.
// Package spireg defines the SPI registry for SPI ports discovered on the host.
//
// SPI ports discovered on the host are automatically registered in the SPI
// registry by host.Init().
package spireg
import (
"errors"
"strconv"
"strings"
"sync"
"periph.io/x/periph/conn/spi"
)
// Opener opens an handle to a port.
//
// It is provided by the actual port driver.
type Opener func() (spi.PortCloser, error)
// Ref references a SPI port.
//
// It is returned by All() to enumerate all registered ports.
type Ref struct {
// Name of the port.
//
// It must not be a sole number. It must be unique across the host.
Name string
// Aliases are the alternative names that can be used to reference this port.
Aliases []string
// Number of the bus or -1 if the bus doesn't have any "native" number.
//
// Buses provided by the CPU normally have a 0 based number. Buses provided
// via an addon (like over USB) generally are not numbered.
//
// The port is a bus number plus a CS line.
Number int
// Open is the factory to open an handle to this SPI port.
Open Opener
}
// Open opens a SPI port by its name, an alias or its number and returns an
// handle to it.
//
// Specify the empty string "" to get the first available port. This is the
// recommended default value unless an application knows the exact port to use.
//
// Each port can register multiple aliases, each leading to the same port
// handle.
//
// "Bus number" is a generic concept that is highly dependent on the platform
// and OS. On some platform, the first port may have the number 0, 1 or as high
// as 32766. Bus numbers are not necessarily continuous and may not start at 0.
// It was observed that the bus number as reported by the OS may change across
// OS revisions.
//
// A SPI port is constructed of the bus number and the chip select (CS) number.
//
// When the SPI port is provided by an off board plug and play bus like USB via
// a FT232H USB device, there can be no associated number.
func Open(name string) (spi.PortCloser, error) {
var r *Ref
var err error
func() {
mu.Lock()
defer mu.Unlock()
if len(byName) == 0 {
err = errors.New("spireg: no port found; did you forget to call Init()?")
return
}
if len(name) == 0 {
r = getDefault()
return
}
// Try by name, by alias, by number.
if r = byName[name]; r == nil {
if r = byAlias[name]; r == nil {
if i, err2 := strconv.Atoi(name); err2 == nil {
r = byNumber[i]
}
}
}
}()
if err != nil {
return nil, err
}
if r == nil {
return nil, errors.New("spireg: can't open unknown port: " + strconv.Quote(name))
}
return r.Open()
}
// All returns a copy of all the registered references to all know SPI ports
// available on this host.
//
// The list is sorted by the port name.
func All() []*Ref {
mu.Lock()
defer mu.Unlock()
out := make([]*Ref, 0, len(byName))
for _, v := range byName {
r := &Ref{Name: v.Name, Aliases: make([]string, len(v.Aliases)), Number: v.Number, Open: v.Open}
copy(r.Aliases, v.Aliases)
out = insertRef(out, r)
}
return out
}
// Register registers a SPI port.
//
// Registering the same port name twice is an error, e.g. o.Name(). o.Number()
// can be -1 to signify that the port doesn't have an inherent "bus number". A
// good example is a port provided over a FT232H device connected on an USB bus.
// In this case, the port name should be created from the serial number of the
// device for unique identification.
//
// Only ports with the CS #0 are registered with their number.
func Register(name string, aliases []string, number int, o Opener) error {
if len(name) == 0 {
return errors.New("spireg: can't register a port with no name")
}
if o == nil {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with nil Opener")
}
if number < -1 {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with invalid port number " + strconv.Itoa(number))
}
if _, err := strconv.Atoi(name); err == nil {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with name being only a number")
}
if strings.Contains(name, ":") {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with name containing ':'")
}
for _, alias := range aliases {
if len(alias) == 0 {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with an empty alias")
}
if name == alias {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with an alias the same as the port name")
}
if _, err := strconv.Atoi(alias); err == nil {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with an alias that is a number: " + strconv.Quote(alias))
}
if strings.Contains(alias, ":") {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " with an alias containing ':': " + strconv.Quote(alias))
}
}
mu.Lock()
defer mu.Unlock()
if _, ok := byName[name]; ok {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " twice")
}
if _, ok := byAlias[name]; ok {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " twice; it is already an alias")
}
if number != -1 {
if _, ok := byNumber[number]; ok {
return errors.New("spireg: can't register port " + strconv.Quote(name) + "; port number " + strconv.Itoa(number) + " is already registered")
}
}
for _, alias := range aliases {
if _, ok := byName[alias]; ok {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " twice; alias " + strconv.Quote(alias) + " is already a port")
}
if _, ok := byAlias[alias]; ok {
return errors.New("spireg: can't register port " + strconv.Quote(name) + " twice; alias " + strconv.Quote(alias) + " is already an alias")
}
}
r := &Ref{Name: name, Aliases: make([]string, len(aliases)), Number: number, Open: o}
copy(r.Aliases, aliases)
byName[name] = r
if number != -1 {
byNumber[number] = r
}
for _, alias := range aliases {
byAlias[alias] = r
}
return nil
}
// Unregister removes a previously registered SPI port.
//
// This can happen when a SPI port is exposed via an USB device and the device
// is unplugged.
func Unregister(name string) error {
mu.Lock()
defer mu.Unlock()
r := byName[name]
if r == nil {
return errors.New("spireg: can't unregister unknown port name " + strconv.Quote(name))
}
delete(byName, name)
delete(byNumber, r.Number)
for _, alias := range r.Aliases {
delete(byAlias, alias)
}
return nil
}
//
var (
mu sync.Mutex
byName = map[string]*Ref{}
// Caches
byNumber = map[int]*Ref{}
byAlias = map[string]*Ref{}
)
// getDefault returns the Ref that should be used as the default port.
func getDefault() *Ref {
var o *Ref
if len(byNumber) == 0 {
// Fallback to use byName using a lexical sort.
name := ""
for n, o2 := range byName {
if len(name) == 0 || n < name {
o = o2
name = n
}
}
return o
}
number := int((^uint(0)) >> 1)
for n, o2 := range byNumber {
if number > n {
number = n
o = o2
}
}
return o
}
func insertRef(l []*Ref, r *Ref) []*Ref {
n := r.Name
i := search(len(l), func(i int) bool { return l[i].Name > n })
l = append(l, nil)
copy(l[i+1:], l[i:])
l[i] = r
return l
}
// search implements the same algorithm as sort.Search().
//
// It was extracted to to not depend on sort, which depends on reflect.
func search(n int, f func(int) bool) int {
lo := 0
for hi := n; lo < hi; {
if i := int(uint(lo+hi) >> 1); !f(i) {
lo = i + 1
} else {
hi = i
}
}
return lo
}