refactor: rewrite depthai node management

This commit is contained in:
Cyrille Nofficial 2022-10-25 16:44:16 +02:00 committed by Cyrille Nofficial
parent 0c5e8e93ac
commit 24e4410c25

View File

@ -1,6 +1,7 @@
""" """
Camera event loop Camera event loop
""" """
import abc
import datetime import datetime
import logging import logging
import typing import typing
@ -117,18 +118,105 @@ class FrameProcessor:
return frame_msg.id return frame_msg.id
class Source(abc.ABC):
@abc.abstractmethod
def get_stream_name(self) -> str:
pass
@abc.abstractmethod
def link_preview(self, input_node: dai.Node.Input):
pass
class ObjectDetectionNN:
"""
Node to detect objects into image
Read image as input and apply resize transformation before to run NN on it
Result is available with 'get_stream_name()' stream
"""
def __init__(self, pipeline: dai.Pipeline):
# Define a neural network that will make predictions based on the source frames
detection_nn = pipeline.createNeuralNetwork()
detection_nn.setBlobPath(_NN_PATH)
detection_nn.setNumPoolFrames(4)
detection_nn.input.setBlocking(False)
detection_nn.setNumInferenceThreads(2)
self._detection_nn = detection_nn
self._xout = self._configure_xout_nn(pipeline)
self._detection_nn.out.link(self._xout.input)
self._manip_image = self._configure_manip(pipeline)
@staticmethod
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
# Resize image
manip = pipeline.createImageManip()
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
manip.initialConfig.setKeepAspectRatio(False)
return manip
@staticmethod
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
xout_nn = pipeline.createXLinkOut()
xout_nn.setStreamName("nn")
xout_nn.input.setBlocking(False)
return xout_nn
def get_stream_name(self) -> str:
return self._xout.getStreamName()
def get_input(self) -> dai.Node.Input:
return self._manip_image.inputImage
class CameraSource(Source):
"""Image source based on camera preview"""
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int):
cam_rgb = pipeline.createColorCamera()
xout_rgb = pipeline.createXLinkOut()
xout_rgb.setStreamName("rgb")
self._cam_rgb = cam_rgb
self._xout_rgb = xout_rgb
# Properties
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
cam_rgb.setPreviewSize(width=img_width, height=img_height)
cam_rgb.setInterleaved(False)
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
cam_rgb.setFps(30)
# link camera preview to output
cam_rgb.preview.link(xout_rgb.input)
def link_preview(self, input_node: dai.Node.Input):
self._cam_rgb.preview.link(input_node)
def get_stream_name(self) -> str:
return self._xout_rgb.getStreamName()
@staticmethod
class PipelineController: class PipelineController:
""" """
Pipeline controller that drive camera device Pipeline controller that drive camera device
""" """
def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor, def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor,
object_processor: ObjectProcessor): object_processor: ObjectProcessor, camera: Source, object_node: ObjectDetectionNN):
self._img_width = img_width self._img_width = img_width
self._img_height = img_height self._img_height = img_height
self._pipeline = self._configure_pipeline() self._pipeline = self._configure_pipeline()
self._frame_processor = frame_processor self._frame_processor = frame_processor
self._object_processor = object_processor self._object_processor = object_processor
self._camera = camera
self._object_node = object_node
self._stop = False self._stop = False
def _configure_pipeline(self) -> dai.Pipeline: def _configure_pipeline(self) -> dai.Pipeline:
@ -137,54 +225,12 @@ class PipelineController:
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4) pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
detection_nn = self._configure_detection_nn(pipeline)
xout_nn = self._configure_xout_nn(pipeline)
# Resize image
manip = pipeline.create(dai.node.ImageManip)
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
manip.initialConfig.setKeepAspectRatio(False)
cam_rgb = pipeline.create(dai.node.ColorCamera)
xout_rgb = pipeline.create(dai.node.XLinkOut)
xout_rgb.setStreamName("rgb")
# Properties
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
cam_rgb.setInterleaved(False)
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
cam_rgb.setFps(30)
# Link preview to manip and manip to nn # Link preview to manip and manip to nn
cam_rgb.preview.link(manip.inputImage) self._camera.link_preview(self._object_node.get_input())
manip.out.link(detection_nn.input)
# Linking to output
cam_rgb.preview.link(xout_rgb.input)
detection_nn.out.link(xout_nn.input)
logger.info("pipeline configured") logger.info("pipeline configured")
return pipeline return pipeline
@staticmethod
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
xout_nn = pipeline.create(dai.node.XLinkOut)
xout_nn.setStreamName("nn")
xout_nn.input.setBlocking(False)
return xout_nn
@staticmethod
def _configure_detection_nn(pipeline: dai.Pipeline) -> dai.node.NeuralNetwork:
# Define a neural network that will make predictions based on the source frames
detection_nn = pipeline.create(dai.node.NeuralNetwork)
detection_nn.setBlobPath(_NN_PATH)
detection_nn.setNumPoolFrames(4)
detection_nn.input.setBlocking(False)
detection_nn.setNumInferenceThreads(2)
return detection_nn
def run(self) -> None: def run(self) -> None:
""" """
Start event loop Start event loop
@ -200,8 +246,8 @@ class PipelineController:
device.startPipeline() device.startPipeline()
# Queues # Queues
queue_size = 4 queue_size = 4
q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False) q_rgb = device.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, blocking=False)
q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False) q_nn = device.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, blocking=False)
self._stop = False self._stop = False
while True: while True:
@ -223,6 +269,7 @@ class PipelineController:
frame_ref = self._frame_processor.process(in_rgb) frame_ref = self._frame_processor.process(in_rgb)
except FrameProcessError as ex: except FrameProcessError as ex:
logger.error("unable to process frame: %s", str(ex)) logger.error("unable to process frame: %s", str(ex))
return
# Read NN result # Read NN result
in_nn: dai.NNData = q_nn.get() in_nn: dai.NNData = q_nn.get()
self._object_processor.process(in_nn, frame_ref) self._object_processor.process(in_nn, frame_ref)