refactor: rewrite depthai node management
This commit is contained in:
parent
0c5e8e93ac
commit
24e4410c25
@ -1,6 +1,7 @@
|
||||
"""
|
||||
Camera event loop
|
||||
"""
|
||||
import abc
|
||||
import datetime
|
||||
import logging
|
||||
import typing
|
||||
@ -117,18 +118,105 @@ class FrameProcessor:
|
||||
return frame_msg.id
|
||||
|
||||
|
||||
class Source(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def get_stream_name(self) -> str:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def link_preview(self, input_node: dai.Node.Input):
|
||||
pass
|
||||
|
||||
|
||||
class ObjectDetectionNN:
|
||||
"""
|
||||
Node to detect objects into image
|
||||
|
||||
Read image as input and apply resize transformation before to run NN on it
|
||||
Result is available with 'get_stream_name()' stream
|
||||
"""
|
||||
|
||||
def __init__(self, pipeline: dai.Pipeline):
|
||||
# Define a neural network that will make predictions based on the source frames
|
||||
detection_nn = pipeline.createNeuralNetwork()
|
||||
detection_nn.setBlobPath(_NN_PATH)
|
||||
detection_nn.setNumPoolFrames(4)
|
||||
detection_nn.input.setBlocking(False)
|
||||
detection_nn.setNumInferenceThreads(2)
|
||||
self._detection_nn = detection_nn
|
||||
self._xout = self._configure_xout_nn(pipeline)
|
||||
self._detection_nn.out.link(self._xout.input)
|
||||
self._manip_image = self._configure_manip(pipeline)
|
||||
|
||||
@staticmethod
|
||||
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
|
||||
# Resize image
|
||||
manip = pipeline.createImageManip()
|
||||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||
manip.initialConfig.setKeepAspectRatio(False)
|
||||
return manip
|
||||
|
||||
@staticmethod
|
||||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||||
xout_nn = pipeline.createXLinkOut()
|
||||
xout_nn.setStreamName("nn")
|
||||
xout_nn.input.setBlocking(False)
|
||||
return xout_nn
|
||||
|
||||
def get_stream_name(self) -> str:
|
||||
return self._xout.getStreamName()
|
||||
|
||||
def get_input(self) -> dai.Node.Input:
|
||||
return self._manip_image.inputImage
|
||||
|
||||
|
||||
class CameraSource(Source):
|
||||
"""Image source based on camera preview"""
|
||||
|
||||
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int):
|
||||
cam_rgb = pipeline.createColorCamera()
|
||||
xout_rgb = pipeline.createXLinkOut()
|
||||
xout_rgb.setStreamName("rgb")
|
||||
|
||||
self._cam_rgb = cam_rgb
|
||||
self._xout_rgb = xout_rgb
|
||||
|
||||
# Properties
|
||||
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
cam_rgb.setPreviewSize(width=img_width, height=img_height)
|
||||
cam_rgb.setInterleaved(False)
|
||||
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||||
cam_rgb.setFps(30)
|
||||
|
||||
# link camera preview to output
|
||||
cam_rgb.preview.link(xout_rgb.input)
|
||||
|
||||
def link_preview(self, input_node: dai.Node.Input):
|
||||
self._cam_rgb.preview.link(input_node)
|
||||
|
||||
def get_stream_name(self) -> str:
|
||||
return self._xout_rgb.getStreamName()
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
||||
|
||||
class PipelineController:
|
||||
"""
|
||||
Pipeline controller that drive camera device
|
||||
"""
|
||||
|
||||
def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor,
|
||||
object_processor: ObjectProcessor):
|
||||
object_processor: ObjectProcessor, camera: Source, object_node: ObjectDetectionNN):
|
||||
self._img_width = img_width
|
||||
self._img_height = img_height
|
||||
self._pipeline = self._configure_pipeline()
|
||||
self._frame_processor = frame_processor
|
||||
self._object_processor = object_processor
|
||||
self._camera = camera
|
||||
self._object_node = object_node
|
||||
self._stop = False
|
||||
|
||||
def _configure_pipeline(self) -> dai.Pipeline:
|
||||
@ -137,54 +225,12 @@ class PipelineController:
|
||||
|
||||
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
||||
|
||||
detection_nn = self._configure_detection_nn(pipeline)
|
||||
xout_nn = self._configure_xout_nn(pipeline)
|
||||
|
||||
# Resize image
|
||||
manip = pipeline.create(dai.node.ImageManip)
|
||||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||
manip.initialConfig.setKeepAspectRatio(False)
|
||||
|
||||
cam_rgb = pipeline.create(dai.node.ColorCamera)
|
||||
xout_rgb = pipeline.create(dai.node.XLinkOut)
|
||||
xout_rgb.setStreamName("rgb")
|
||||
|
||||
# Properties
|
||||
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
|
||||
cam_rgb.setInterleaved(False)
|
||||
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||||
cam_rgb.setFps(30)
|
||||
|
||||
# Link preview to manip and manip to nn
|
||||
cam_rgb.preview.link(manip.inputImage)
|
||||
manip.out.link(detection_nn.input)
|
||||
|
||||
# Linking to output
|
||||
cam_rgb.preview.link(xout_rgb.input)
|
||||
detection_nn.out.link(xout_nn.input)
|
||||
self._camera.link_preview(self._object_node.get_input())
|
||||
|
||||
logger.info("pipeline configured")
|
||||
return pipeline
|
||||
|
||||
@staticmethod
|
||||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||||
xout_nn = pipeline.create(dai.node.XLinkOut)
|
||||
xout_nn.setStreamName("nn")
|
||||
xout_nn.input.setBlocking(False)
|
||||
return xout_nn
|
||||
|
||||
@staticmethod
|
||||
def _configure_detection_nn(pipeline: dai.Pipeline) -> dai.node.NeuralNetwork:
|
||||
# Define a neural network that will make predictions based on the source frames
|
||||
detection_nn = pipeline.create(dai.node.NeuralNetwork)
|
||||
detection_nn.setBlobPath(_NN_PATH)
|
||||
detection_nn.setNumPoolFrames(4)
|
||||
detection_nn.input.setBlocking(False)
|
||||
detection_nn.setNumInferenceThreads(2)
|
||||
return detection_nn
|
||||
|
||||
def run(self) -> None:
|
||||
"""
|
||||
Start event loop
|
||||
@ -200,8 +246,8 @@ class PipelineController:
|
||||
device.startPipeline()
|
||||
# Queues
|
||||
queue_size = 4
|
||||
q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False)
|
||||
q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False)
|
||||
q_rgb = device.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, blocking=False)
|
||||
q_nn = device.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, blocking=False)
|
||||
|
||||
self._stop = False
|
||||
while True:
|
||||
@ -223,6 +269,7 @@ class PipelineController:
|
||||
frame_ref = self._frame_processor.process(in_rgb)
|
||||
except FrameProcessError as ex:
|
||||
logger.error("unable to process frame: %s", str(ex))
|
||||
return
|
||||
# Read NN result
|
||||
in_nn: dai.NNData = q_nn.get()
|
||||
self._object_processor.process(in_nn, frame_ref)
|
||||
|
Loading…
Reference in New Issue
Block a user