Compare commits
25 Commits
feat/simul
...
master
Author | SHA1 | Date | |
---|---|---|---|
b2f2570968 | |||
267c90750d | |||
01e2c8ce16 | |||
69b4e28323 | |||
31ceef93ae | |||
1703bb356f | |||
33791d0014 | |||
1ee37f65af | |||
552f69e46e | |||
4ec2aef409 | |||
54977ee4e3 | |||
87c1ee96e3 | |||
d4f8a12577 | |||
2593d5d953 | |||
c6f955a50c | |||
7ebd9093d9 | |||
642df5b927 | |||
c755d019e8 | |||
befb4bacb3 | |||
30f9876c1d | |||
df8676ae5c | |||
9c07826898 | |||
2149a01dd6 | |||
0db958e936 | |||
4faf3c2fee |
@ -1,5 +1,5 @@
|
|||||||
venv
|
venv
|
||||||
dist/
|
dist/*
|
||||||
build-docker.sh
|
build-docker.sh
|
||||||
Dockerfile
|
Dockerfile
|
||||||
|
|
||||||
|
22
Dockerfile
22
Dockerfile
@ -1,9 +1,10 @@
|
|||||||
FROM docker.io/library/python:3.10-slim as base
|
FROM docker.io/library/python:3.12-slim as base
|
||||||
|
|
||||||
# Configure piwheels repo to use pre-compiled numpy wheels for arm
|
# Configure piwheels repo to use pre-compiled numpy wheels for arm
|
||||||
RUN echo -n "[global]\nextra-index-url=https://www.piwheels.org/simple\n" >> /etc/pip.conf
|
RUN echo -n "[global]\n" > /etc/pip.conf &&\
|
||||||
|
echo -n "extra-index-url = https://www.piwheels.org/simple https://git.cyrilix.bzh/api/packages/robocars/pypi/simple \n" >> /etc/pip.conf
|
||||||
|
|
||||||
RUN apt-get update && apt-get install -y libgl1 libglib2.0-0
|
RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 procps cmake g++ gcc
|
||||||
|
|
||||||
#################
|
#################
|
||||||
FROM base as model-builder
|
FROM base as model-builder
|
||||||
@ -18,20 +19,29 @@ RUN blobconverter --zoo-name mobile_object_localizer_192x192 --zoo-type depthai
|
|||||||
FROM base as builder
|
FROM base as builder
|
||||||
|
|
||||||
RUN apt-get install -y git && \
|
RUN apt-get install -y git && \
|
||||||
pip3 install poetry==1.2.0 && \
|
pip3 install poetry && \
|
||||||
poetry self add "poetry-dynamic-versioning[plugin]"
|
poetry self add "poetry-dynamic-versioning[plugin]"
|
||||||
ADD . .
|
|
||||||
|
ADD poetry.lock .
|
||||||
|
ADD pyproject.toml .
|
||||||
|
ADD camera camera
|
||||||
|
ADD README.md .
|
||||||
|
|
||||||
|
# Poetry expect to found a git project
|
||||||
|
ADD .git .git
|
||||||
|
|
||||||
RUN poetry build
|
RUN poetry build
|
||||||
|
|
||||||
#################
|
#################
|
||||||
FROM base
|
FROM base
|
||||||
|
|
||||||
|
COPY camera_tunning /camera_tuning
|
||||||
|
|
||||||
RUN mkdir /models
|
RUN mkdir /models
|
||||||
COPY --from=model-builder /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob
|
COPY --from=model-builder /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob
|
||||||
|
|
||||||
COPY --from=builder dist/*.whl /tmp/
|
COPY --from=builder dist/*.whl /tmp/
|
||||||
RUN pip3 install /tmp/*whl
|
RUN pip3 install /tmp/*.whl
|
||||||
|
|
||||||
WORKDIR /tmp
|
WORKDIR /tmp
|
||||||
USER 1234
|
USER 1234
|
||||||
|
133
README.md
133
README.md
@ -9,3 +9,136 @@ To build images, run script:
|
|||||||
```bash
|
```bash
|
||||||
./build-docker.sh
|
./build-docker.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
```shell
|
||||||
|
usage: cli.py [-h] [-u MQTT_USERNAME] [-p MQTT_PASSWORD] [-b MQTT_BROKER_HOST]
|
||||||
|
[-P MQTT_BROKER_PORT] [-C MQTT_CLIENT_ID]
|
||||||
|
[-c MQTT_TOPIC_ROBOCAR_OAK_CAMERA]
|
||||||
|
[-o MQTT_TOPIC_ROBOCAR_OBJECTS] [-t OBJECTS_THRESHOLD]
|
||||||
|
[-d MQTT_TOPIC_ROBOCAR_DISPARITY] [-f CAMERA_FPS]
|
||||||
|
[--camera-tuning-exposition {default,500us,8300us}]
|
||||||
|
[-H IMAGE_HEIGHT] [-W IMAGE_WIDTH] [--log {info,debug}]
|
||||||
|
[--stereo-mode-lr-check] [--stereo-mode-extended-disparity]
|
||||||
|
[--stereo-mode-subpixel]
|
||||||
|
[--stereo-post-processing-median-filter]
|
||||||
|
[--stereo-post-processing-median-value {MEDIAN_OFF,KERNEL_3x3,KERNEL_5x5,KERNEL_7x7}]
|
||||||
|
[--stereo-post-processing-speckle-filter]
|
||||||
|
[--stereo-post-processing-speckle-enable STEREO_POST_PROCESSING_SPECKLE_ENABLE]
|
||||||
|
[--stereo-post-processing-speckle-range STEREO_POST_PROCESSING_SPECKLE_RANGE]
|
||||||
|
[--stereo-post-processing-temporal-filter]
|
||||||
|
[--stereo-post-processing-temporal-persistency-mode {PERSISTENCY_OFF,VALID_8_OUT_OF_8,VALID_2_IN_LAST_3,VALID_2_IN_LAST_4,VALID_2_OUT_OF_8,VALID_1_IN_LAST_2,VALID_1_IN_LAST_5,VALID_1_IN_LAST_8,PERSISTENCY_INDEFINITELY}]
|
||||||
|
[--stereo-post-processing-temporal-alpha STEREO_POST_PROCESSING_TEMPORAL_ALPHA]
|
||||||
|
[--stereo-post-processing-temporal-delta STEREO_POST_PROCESSING_TEMPORAL_DELTA]
|
||||||
|
[--stereo-post-processing-spatial-filter]
|
||||||
|
[--stereo-post-processing-spatial-enable STEREO_POST_PROCESSING_SPATIAL_ENABLE]
|
||||||
|
[--stereo-post-processing-spatial-hole-filling-radius STEREO_POST_PROCESSING_SPATIAL_HOLE_FILLING_RADIUS]
|
||||||
|
[--stereo-post-processing-spatial-alpha STEREO_POST_PROCESSING_SPATIAL_ALPHA]
|
||||||
|
[--stereo-post-processing-spatial-delta STEREO_POST_PROCESSING_SPATIAL_DELTA]
|
||||||
|
[--stereo-post-processing-spatial-num-iterations STEREO_POST_PROCESSING_SPATIAL_NUM_ITERATIONS]
|
||||||
|
[--stereo-post-processing-threshold-filter]
|
||||||
|
[--stereo-post-processing-threshold-min-range STEREO_POST_PROCESSING_THRESHOLD_MIN_RANGE]
|
||||||
|
[--stereo-post-processing-threshold-max-range STEREO_POST_PROCESSING_THRESHOLD_MAX_RANGE]
|
||||||
|
[--stereo-post-processing-decimation-filter]
|
||||||
|
[--stereo-post-processing-decimation-decimal-factor {1,2,3,4}]
|
||||||
|
[--stereo-post-processing-decimation-mode {PIXEL_SKIPPING,NON_ZERO_MEDIAN,NON_ZERO_MEAN}]
|
||||||
|
|
||||||
|
options:
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
-u MQTT_USERNAME, --mqtt-username MQTT_USERNAME
|
||||||
|
MQTT user
|
||||||
|
-p MQTT_PASSWORD, --mqtt-password MQTT_PASSWORD
|
||||||
|
MQTT password
|
||||||
|
-b MQTT_BROKER_HOST, --mqtt-broker-host MQTT_BROKER_HOST
|
||||||
|
MQTT broker host
|
||||||
|
-P MQTT_BROKER_PORT, --mqtt-broker-port MQTT_BROKER_PORT
|
||||||
|
MQTT broker port
|
||||||
|
-C MQTT_CLIENT_ID, --mqtt-client-id MQTT_CLIENT_ID
|
||||||
|
MQTT client id
|
||||||
|
-c MQTT_TOPIC_ROBOCAR_OAK_CAMERA, --mqtt-topic-robocar-oak-camera MQTT_TOPIC_ROBOCAR_OAK_CAMERA
|
||||||
|
MQTT topic where to publish robocar-oak-camera frames
|
||||||
|
-o MQTT_TOPIC_ROBOCAR_OBJECTS, ---mqtt-topic-robocar-objects MQTT_TOPIC_ROBOCAR_OBJECTS
|
||||||
|
MQTT topic where to publish objects detection results
|
||||||
|
-t OBJECTS_THRESHOLD, --objects-threshold OBJECTS_THRESHOLD
|
||||||
|
threshold to filter detected objects
|
||||||
|
-d MQTT_TOPIC_ROBOCAR_DISPARITY, ---mqtt-topic-robocar-disparity MQTT_TOPIC_ROBOCAR_DISPARITY
|
||||||
|
MQTT topic where to publish disparity results
|
||||||
|
-f CAMERA_FPS, --camera-fps CAMERA_FPS
|
||||||
|
set rate at which camera should produce frames
|
||||||
|
--camera-tuning-exposition {default,500us,8300us}
|
||||||
|
override camera exposition configuration
|
||||||
|
-H IMAGE_HEIGHT, --image-height IMAGE_HEIGHT
|
||||||
|
image height
|
||||||
|
-W IMAGE_WIDTH, --image-width IMAGE_WIDTH
|
||||||
|
image width
|
||||||
|
--log {info,debug} Log level
|
||||||
|
--stereo-mode-lr-check
|
||||||
|
remove incorrectly calculated disparity pixels due to
|
||||||
|
occlusions at object borders
|
||||||
|
--stereo-mode-extended-disparity
|
||||||
|
allows detecting closer distance objects for the given
|
||||||
|
baseline. This increases the maximum disparity search
|
||||||
|
from 96 to 191, meaning the range is now: [0..190]
|
||||||
|
--stereo-mode-subpixel
|
||||||
|
iimproves the precision and is especially useful for
|
||||||
|
long range measurements
|
||||||
|
--stereo-post-processing-median-filter
|
||||||
|
enable post-processing median filter
|
||||||
|
--stereo-post-processing-median-value {MEDIAN_OFF,KERNEL_3x3,KERNEL_5x5,KERNEL_7x7}
|
||||||
|
Median filter config
|
||||||
|
--stereo-post-processing-speckle-filter
|
||||||
|
enable post-processing speckle filter
|
||||||
|
--stereo-post-processing-speckle-enable STEREO_POST_PROCESSING_SPECKLE_ENABLE
|
||||||
|
enable post-processing speckle filter
|
||||||
|
--stereo-post-processing-speckle-range STEREO_POST_PROCESSING_SPECKLE_RANGE
|
||||||
|
Speckle search range
|
||||||
|
--stereo-post-processing-temporal-filter
|
||||||
|
enable post-processing temporal filter
|
||||||
|
--stereo-post-processing-temporal-persistency-mode {PERSISTENCY_OFF,VALID_8_OUT_OF_8,VALID_2_IN_LAST_3,VALID_2_IN_LAST_4,VALID_2_OUT_OF_8,VALID_1_IN_LAST_2,VALID_1_IN_LAST_5,VALID_1_IN_LAST_8,PERSISTENCY_INDEFINITELY}
|
||||||
|
Persistency mode.
|
||||||
|
--stereo-post-processing-temporal-alpha STEREO_POST_PROCESSING_TEMPORAL_ALPHA
|
||||||
|
The Alpha factor in an exponential moving average with
|
||||||
|
Alpha=1 - no filter. Alpha = 0 - infinite filter.
|
||||||
|
Determines the extent of the temporal history that
|
||||||
|
should be averaged.
|
||||||
|
--stereo-post-processing-temporal-delta STEREO_POST_PROCESSING_TEMPORAL_DELTA
|
||||||
|
Step-size boundary. Establishes the threshold used to
|
||||||
|
preserve surfaces (edges). If the disparity value
|
||||||
|
between neighboring pixels exceed the disparity
|
||||||
|
threshold set by this delta parameter, then filtering
|
||||||
|
will be temporarily disabled. Default value 0 means
|
||||||
|
auto: 3 disparity integer levels. In case of subpixel
|
||||||
|
mode it’s 3*number of subpixel levels.
|
||||||
|
--stereo-post-processing-spatial-filter
|
||||||
|
enable post-processing spatial filter
|
||||||
|
--stereo-post-processing-spatial-enable STEREO_POST_PROCESSING_SPATIAL_ENABLE
|
||||||
|
Whether to enable or disable the filter
|
||||||
|
--stereo-post-processing-spatial-hole-filling-radius STEREO_POST_PROCESSING_SPATIAL_HOLE_FILLING_RADIUS
|
||||||
|
An in-place heuristic symmetric hole-filling mode
|
||||||
|
applied horizontally during the filter passes
|
||||||
|
--stereo-post-processing-spatial-alpha STEREO_POST_PROCESSING_SPATIAL_ALPHA
|
||||||
|
The Alpha factor in an exponential moving average with
|
||||||
|
Alpha=1 - no filter. Alpha = 0 - infinite filter
|
||||||
|
--stereo-post-processing-spatial-delta STEREO_POST_PROCESSING_SPATIAL_DELTA
|
||||||
|
Step-size boundary. Establishes the threshold used to
|
||||||
|
preserve edges
|
||||||
|
--stereo-post-processing-spatial-num-iterations STEREO_POST_PROCESSING_SPATIAL_NUM_ITERATIONS
|
||||||
|
Number of iterations over the image in both horizontal
|
||||||
|
and vertical direction
|
||||||
|
--stereo-post-processing-threshold-filter
|
||||||
|
enable post-processing threshold filter
|
||||||
|
--stereo-post-processing-threshold-min-range STEREO_POST_PROCESSING_THRESHOLD_MIN_RANGE
|
||||||
|
Minimum range in depth units. Depth values under this
|
||||||
|
value are invalidated
|
||||||
|
--stereo-post-processing-threshold-max-range STEREO_POST_PROCESSING_THRESHOLD_MAX_RANGE
|
||||||
|
Maximum range in depth units. Depth values over this
|
||||||
|
value are invalidated.
|
||||||
|
--stereo-post-processing-decimation-filter
|
||||||
|
enable post-processing decimation filter
|
||||||
|
--stereo-post-processing-decimation-decimal-factor {1,2,3,4}
|
||||||
|
Decimation factor
|
||||||
|
--stereo-post-processing-decimation-mode {PIXEL_SKIPPING,NON_ZERO_MEDIAN,NON_ZERO_MEAN}
|
||||||
|
Decimation algorithm type
|
||||||
|
|
||||||
|
```
|
@ -7,6 +7,6 @@ PLATFORM="linux/amd64,linux/arm64"
|
|||||||
#PLATFORM="linux/amd64,linux/arm64,linux/arm/v7"
|
#PLATFORM="linux/amd64,linux/arm64,linux/arm/v7"
|
||||||
|
|
||||||
podman build . --platform "${PLATFORM}" --manifest "${IMAGE_NAME}:${TAG}"
|
podman build . --platform "${PLATFORM}" --manifest "${IMAGE_NAME}:${TAG}"
|
||||||
podman manifest push --all --format v2s2 "localhost/${IMAGE_NAME}:${TAG}" "docker://${FULL_IMAGE_NAME}"
|
podman manifest push --all "localhost/${IMAGE_NAME}:${TAG}" "docker://${FULL_IMAGE_NAME}"
|
||||||
|
|
||||||
printf "\nImage %s published" "docker://${FULL_IMAGE_NAME}"
|
printf "\nImage %s published" "docker://${FULL_IMAGE_NAME}"
|
||||||
|
266
camera/cli.py
266
camera/cli.py
@ -5,15 +5,22 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import signal
|
import signal
|
||||||
import typing, types
|
import types
|
||||||
|
import typing
|
||||||
|
from typing import List
|
||||||
|
|
||||||
import depthai as dai
|
import depthai as dai
|
||||||
import paho.mqtt.client as mqtt
|
import paho.mqtt.client as mqtt
|
||||||
|
|
||||||
from . import depthai as cam # pylint: disable=reimported
|
from camera import oak_pipeline as cam
|
||||||
|
from camera.oak_pipeline import StereoDepthPostFilter, MedianFilter, SpeckleFilter, TemporalFilter, SpatialFilter, \
|
||||||
|
ThresholdFilter, DecimationFilter
|
||||||
|
|
||||||
|
CAMERA_EXPOSITION_DEFAULT = "default"
|
||||||
|
CAMERA_EXPOSITION_8300US = "8300us"
|
||||||
|
CAMERA_EXPOSITION_500US = "500us"
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
logging.basicConfig(level=logging.INFO)
|
|
||||||
|
|
||||||
_DEFAULT_CLIENT_ID = "robocar-depthai"
|
_DEFAULT_CLIENT_ID = "robocar-depthai"
|
||||||
|
|
||||||
@ -46,12 +53,147 @@ def _parse_args_cli() -> argparse.Namespace:
|
|||||||
help="threshold to filter detected objects",
|
help="threshold to filter detected objects",
|
||||||
type=float,
|
type=float,
|
||||||
default=_get_env_float_value("OBJECTS_THRESHOLD", 0.2))
|
default=_get_env_float_value("OBJECTS_THRESHOLD", 0.2))
|
||||||
|
parser.add_argument("-d", "---mqtt-topic-robocar-disparity",
|
||||||
|
help="MQTT topic where to publish disparity results",
|
||||||
|
default=_get_env_value("MQTT_TOPIC_DISPARITY", "/disparity"))
|
||||||
|
parser.add_argument("-f", "--camera-fps",
|
||||||
|
help="set rate at which camera should produce frames",
|
||||||
|
type=int,
|
||||||
|
default=30)
|
||||||
|
parser.add_argument("--camera-tuning-exposition", type=str,
|
||||||
|
default=CAMERA_EXPOSITION_DEFAULT,
|
||||||
|
help="override camera exposition configuration",
|
||||||
|
choices=[CAMERA_EXPOSITION_DEFAULT, CAMERA_EXPOSITION_500US, CAMERA_EXPOSITION_8300US])
|
||||||
parser.add_argument("-H", "--image-height", help="image height",
|
parser.add_argument("-H", "--image-height", help="image height",
|
||||||
type=int,
|
type=int,
|
||||||
default=_get_env_int_value("IMAGE_HEIGHT", 120))
|
default=_get_env_int_value("IMAGE_HEIGHT", 120))
|
||||||
parser.add_argument("-W", "--image-width", help="image width",
|
parser.add_argument("-W", "--image-width", help="image width",
|
||||||
type=int,
|
type=int,
|
||||||
default=_get_env_int_value("IMAGE_WIDTH", 126))
|
default=_get_env_int_value("IMAGE_WIDTH", 126))
|
||||||
|
parser.add_argument("--log", help="Log level",
|
||||||
|
type=str,
|
||||||
|
default="info",
|
||||||
|
choices=["info", "debug"])
|
||||||
|
|
||||||
|
parser.add_argument("--disable-disparity", action="store_true",
|
||||||
|
help="enable disparity frame",
|
||||||
|
default=False
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-mode-lr-check",
|
||||||
|
help="remove incorrectly calculated disparity pixels due to occlusions at object borders",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-mode-extended-disparity",
|
||||||
|
help="allows detecting closer distance objects for the given baseline. This increases the maximum disparity search from 96 to 191, meaning the range is now: [0..190]",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-mode-subpixel",
|
||||||
|
help="iimproves the precision and is especially useful for long range measurements",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
parser.add_argument("--stereo-post-processing-median-filter",
|
||||||
|
help="enable post-processing median filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-median-value",
|
||||||
|
help="Median filter config ",
|
||||||
|
type=str,
|
||||||
|
choices=["MEDIAN_OFF", "KERNEL_3x3", "KERNEL_5x5", "KERNEL_7x7"],
|
||||||
|
default="KERNEL_7x7",
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-speckle-filter",
|
||||||
|
help="enable post-processing speckle filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-speckle-enable",
|
||||||
|
help="enable post-processing speckle filter",
|
||||||
|
type=bool, default=False
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-speckle-range",
|
||||||
|
help="Speckle search range",
|
||||||
|
type=int, default=50
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--stereo-post-processing-temporal-filter",
|
||||||
|
help="enable post-processing temporal filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-temporal-persistency-mode",
|
||||||
|
help="Persistency mode.",
|
||||||
|
type=str, default="VALID_2_IN_LAST_4",
|
||||||
|
choices=["PERSISTENCY_OFF", "VALID_8_OUT_OF_8", "VALID_2_IN_LAST_3", "VALID_2_IN_LAST_4",
|
||||||
|
"VALID_2_OUT_OF_8", "VALID_1_IN_LAST_2", "VALID_1_IN_LAST_5", "VALID_1_IN_LAST_8",
|
||||||
|
"PERSISTENCY_INDEFINITELY"]
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-temporal-alpha",
|
||||||
|
help="The Alpha factor in an exponential moving average with Alpha=1 - no filter. "
|
||||||
|
"Alpha = 0 - infinite filter. Determines the extent of the temporal history that should be "
|
||||||
|
"averaged. ",
|
||||||
|
type=float, default=0.4,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-temporal-delta",
|
||||||
|
help="Step-size boundary. Establishes the threshold used to preserve surfaces (edges). "
|
||||||
|
"If the disparity value between neighboring pixels exceed the disparity threshold set by "
|
||||||
|
"this delta parameter, then filtering will be temporarily disabled. Default value 0 means "
|
||||||
|
"auto: 3 disparity integer levels. In case of subpixel mode it’s 3*number of subpixel "
|
||||||
|
"levels.",
|
||||||
|
type=int, default=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-filter",
|
||||||
|
help="enable post-processing spatial filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-enable",
|
||||||
|
help="Whether to enable or disable the filter",
|
||||||
|
type=bool, default=False,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-hole-filling-radius",
|
||||||
|
help="An in-place heuristic symmetric hole-filling mode applied horizontally during the filter passes",
|
||||||
|
type=int, default=2,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-alpha",
|
||||||
|
help="The Alpha factor in an exponential moving average with Alpha=1 - no filter. Alpha = 0 - infinite filter",
|
||||||
|
type=float, default=0.5,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-delta",
|
||||||
|
help="Step-size boundary. Establishes the threshold used to preserve edges",
|
||||||
|
type=int, default=0,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-spatial-num-iterations",
|
||||||
|
help="Number of iterations over the image in both horizontal and vertical direction",
|
||||||
|
type=int, default=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--stereo-post-processing-threshold-filter",
|
||||||
|
help="enable post-processing threshold filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-threshold-min-range",
|
||||||
|
help="Minimum range in depth units. Depth values under this value are invalidated",
|
||||||
|
type=int, default=500,
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-threshold-max-range",
|
||||||
|
help="Maximum range in depth units. Depth values over this value are invalidated.",
|
||||||
|
type=int, default=15000,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--stereo-post-processing-decimation-filter",
|
||||||
|
help="enable post-processing decimation filter",
|
||||||
|
default=False, action="store_true"
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-decimation-decimal-factor",
|
||||||
|
help="Decimation factor",
|
||||||
|
type=int, default=1, choices=[1, 2, 3, 4]
|
||||||
|
)
|
||||||
|
parser.add_argument("--stereo-post-processing-decimation-mode",
|
||||||
|
help="Decimation algorithm type",
|
||||||
|
type=str, default="PIXEL_SKIPPING",
|
||||||
|
choices=["PIXEL_SKIPPING", "NON_ZERO_MEDIAN", "NON_ZERO_MEAN"]
|
||||||
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
return args
|
return args
|
||||||
|
|
||||||
@ -72,9 +214,12 @@ def execute_from_command_line() -> None:
|
|||||||
Cli entrypoint
|
Cli entrypoint
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
logging.basicConfig(level=logging.INFO)
|
|
||||||
|
|
||||||
args = _parse_args_cli()
|
args = _parse_args_cli()
|
||||||
|
if args.log == "info":
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
elif args.log == "debug":
|
||||||
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
|
|
||||||
client = _init_mqtt_client(broker_host=args.mqtt_broker_host,
|
client = _init_mqtt_client(broker_host=args.mqtt_broker_host,
|
||||||
broker_port=args.mqtt_broker_port,
|
broker_port=args.mqtt_broker_port,
|
||||||
@ -86,15 +231,36 @@ def execute_from_command_line() -> None:
|
|||||||
object_processor = cam.ObjectProcessor(mqtt_client=client,
|
object_processor = cam.ObjectProcessor(mqtt_client=client,
|
||||||
objects_topic=args.mqtt_topic_robocar_objects,
|
objects_topic=args.mqtt_topic_robocar_objects,
|
||||||
objects_threshold=args.objects_threshold)
|
objects_threshold=args.objects_threshold)
|
||||||
|
if args.disable_disparity == False:
|
||||||
|
depth_source = cam.DepthSource(pipeline=pipeline,
|
||||||
|
extended_disparity=args.stereo_mode_extended_disparity,
|
||||||
|
subpixel=args.stereo_mode_subpixel,
|
||||||
|
lr_check=args.stereo_mode_lr_check,
|
||||||
|
stereo_filters=stereo_filters),
|
||||||
|
disparity_processor = cam.DisparityProcessor(mqtt_client=client, disparity_topic=args.mqtt_topic_robocar_disparity)
|
||||||
|
else:
|
||||||
|
disparity_processor = None
|
||||||
|
depth_source = None
|
||||||
|
|
||||||
pipeline = dai.Pipeline()
|
pipeline = dai.Pipeline()
|
||||||
pipeline_controller = cam.PipelineController(frame_processor=frame_processor,
|
if args.camera_tuning_exposition == CAMERA_EXPOSITION_500US:
|
||||||
|
pipeline.setCameraTuningBlobPath('/camera_tuning/tuning_exp_limit_500us.bin')
|
||||||
|
elif args.camera_tuning_exposition == CAMERA_EXPOSITION_8300US:
|
||||||
|
pipeline.setCameraTuningBlobPath('/camera_tuning/tuning_exp_limit_8300us.bin')
|
||||||
|
|
||||||
|
stereo_filters = _get_stereo_filters(args)
|
||||||
|
|
||||||
|
pipeline_controller = cam.PipelineController(pipeline=pipeline,
|
||||||
|
frame_processor=frame_processor,
|
||||||
object_processor=object_processor,
|
object_processor=object_processor,
|
||||||
object_node=cam.ObjectDetectionNN(pipeline=pipeline),
|
object_node=cam.ObjectDetectionNN(pipeline=pipeline),
|
||||||
camera=cam.CameraSource(pipeline=pipeline,
|
camera=cam.CameraSource(pipeline=pipeline,
|
||||||
img_width=args.image_width,
|
img_width=args.image_width,
|
||||||
img_height=args.image_width,
|
img_height=args.image_height,
|
||||||
))
|
fps=args.camera_fps,
|
||||||
|
),
|
||||||
|
depth_source=depth_source,
|
||||||
|
disparity_processor=disparity_processor)
|
||||||
|
|
||||||
def sigterm_handler(signum: int, frame: typing.Optional[
|
def sigterm_handler(signum: int, frame: typing.Optional[
|
||||||
types.FrameType]) -> None: # pylint: disable=unused-argument # need to implement handler signature
|
types.FrameType]) -> None: # pylint: disable=unused-argument # need to implement handler signature
|
||||||
@ -119,3 +285,89 @@ def _get_env_int_value(env_var: str, default_value: int) -> int:
|
|||||||
def _get_env_float_value(env_var: str, default_value: float) -> float:
|
def _get_env_float_value(env_var: str, default_value: float) -> float:
|
||||||
value = _get_env_value(env_var, str(default_value))
|
value = _get_env_value(env_var, str(default_value))
|
||||||
return float(value)
|
return float(value)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_stereo_filters(args: argparse.Namespace) -> List[StereoDepthPostFilter]:
|
||||||
|
filters = []
|
||||||
|
|
||||||
|
if args.stereo_post_processing_median_filter:
|
||||||
|
if args.stereo_post_processing_median_value == "MEDIAN_OFF":
|
||||||
|
value = dai.MedianFilter.MEDIAN_OFF
|
||||||
|
elif args.stereo_post_processing_median_value == "KERNEL_3x3":
|
||||||
|
value = dai.MedianFilter.KERNEL_3x3
|
||||||
|
elif args.stereo_post_processing_median_value == "KERNEL_5x5":
|
||||||
|
value = dai.MedianFilter.KERNEL_5x5
|
||||||
|
elif args.stereo_post_processing_median_value == "KERNEL_7x7":
|
||||||
|
value = dai.MedianFilter.KERNEL_7x7
|
||||||
|
else:
|
||||||
|
value = dai.MedianFilter.KERNEL_7x7
|
||||||
|
|
||||||
|
filters.append(MedianFilter(value=value))
|
||||||
|
|
||||||
|
if args.stereo_post_processing_speckle_filter:
|
||||||
|
filters.append(SpeckleFilter(enable=args.stereo_post_processing_speckle_enable,
|
||||||
|
speckle_range=args.stereo_post_processing_speckle_range))
|
||||||
|
|
||||||
|
if args.stereo_post_processing_temporal_filter:
|
||||||
|
if args.stereo_post_processing_temporal_persistency-mode == "PERSISTENCY_OFF":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.PERSISTENCY_OFF
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_8_OUT_OF_8":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_8_OUT_OF_8
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_2_IN_LAST_3":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_3
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_2_IN_LAST_4":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_4
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_2_OUT_OF_8":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_OUT_OF_8
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_1_IN_LAST_2":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_2
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_1_IN_LAST_5":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_5
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "VALID_1_IN_LAST_8":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_1_IN_LAST_8
|
||||||
|
elif args.stereo_post_processing_temporal_persistency-mode == "PERSISTENCY_INDEFINITELY":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.PERSISTENCY_INDEFINITELY
|
||||||
|
else:
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_4
|
||||||
|
|
||||||
|
filters.append(TemporalFilter(
|
||||||
|
enable=args.stereo_post_processing_temporal_enable,
|
||||||
|
persistencyMode=mode,
|
||||||
|
alpha=args.stereo_post_processing_temporal_alpha,
|
||||||
|
delta=args.stereo_post_processing_temporal_delta
|
||||||
|
))
|
||||||
|
|
||||||
|
if args.stereo_post_processing_spatial_filter:
|
||||||
|
filters.append(SpatialFilter(enable=args.stereo_post_processing_spatial_enable,
|
||||||
|
hole_filling_radius=args.stereo_post_processing_spatial_hole_filling_radius,
|
||||||
|
alpha=args.stereo_post_processing_spatial_alpha,
|
||||||
|
delta=args.stereo_post_processing_spatial_delta,
|
||||||
|
num_iterations=args.stereo_post_processing_spatial_num_iterations,
|
||||||
|
))
|
||||||
|
|
||||||
|
if args.stereo_post_processing_threshold_filter:
|
||||||
|
filters.append(ThresholdFilter(
|
||||||
|
min_range=args.stereo_post_processing_threshold_min_range,
|
||||||
|
max_range=args.stereo_post_processing_threshold_max_range,
|
||||||
|
))
|
||||||
|
|
||||||
|
if args.stereo_post_processing_decimation_filter:
|
||||||
|
|
||||||
|
if args.stereo_post_processing_decimation_mode == "PIXEL_SKIPPING":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.PIXEL_SKIPPING
|
||||||
|
if args.stereo_post_processing_decimation_mode == "NON_ZERO_MEDIAN":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.NON_ZERO_MEDIAN
|
||||||
|
if args.stereo_post_processing_decimation_mode == "NON_ZERO_MEAN":
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.NON_ZERO_MEAN
|
||||||
|
else:
|
||||||
|
mode=dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.PIXEL_SKIPPING
|
||||||
|
|
||||||
|
filters.append(DecimationFilter(
|
||||||
|
decimation_factor=args.stereo_post_processing_decimation_decimal_factor,
|
||||||
|
mode=mode
|
||||||
|
))
|
||||||
|
|
||||||
|
return filters
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
execute_from_command_line()
|
@ -1,376 +0,0 @@
|
|||||||
"""
|
|
||||||
Camera event loop
|
|
||||||
"""
|
|
||||||
import abc
|
|
||||||
import datetime
|
|
||||||
import logging
|
|
||||||
import pathlib
|
|
||||||
import typing
|
|
||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import depthai as dai
|
|
||||||
import events.events_pb2 as evt
|
|
||||||
import numpy as np
|
|
||||||
import numpy.typing as npt
|
|
||||||
import paho.mqtt.client as mqtt
|
|
||||||
from depthai import Device
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
|
|
||||||
_NN_WIDTH = 192
|
|
||||||
_NN_HEIGHT = 192
|
|
||||||
|
|
||||||
|
|
||||||
class ObjectProcessor:
|
|
||||||
"""
|
|
||||||
Processor for Object detection
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
|
|
||||||
self._mqtt_client = mqtt_client
|
|
||||||
self._objects_topic = objects_topic
|
|
||||||
self._objects_threshold = objects_threshold
|
|
||||||
|
|
||||||
def process(self, in_nn: dai.NNData, frame_ref: evt.FrameRef) -> None:
|
|
||||||
"""
|
|
||||||
Parse and publish result of NeuralNetwork result
|
|
||||||
:param in_nn: NeuralNetwork result read from device
|
|
||||||
:param frame_ref: Id of the frame where objects are been detected
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
|
|
||||||
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
|
|
||||||
# keep boxes bigger than threshold
|
|
||||||
mask = detection_scores >= self._objects_threshold
|
|
||||||
boxes = detection_boxes[mask]
|
|
||||||
scores = detection_scores[mask]
|
|
||||||
|
|
||||||
if boxes.shape[0] > 0:
|
|
||||||
self._publish_objects(boxes, frame_ref, scores)
|
|
||||||
|
|
||||||
def _publish_objects(self, boxes: npt.NDArray[np.float64], frame_ref: evt.FrameRef, scores: npt.NDArray[np.float64]) -> None:
|
|
||||||
objects_msg = evt.ObjectsMessage()
|
|
||||||
objs = []
|
|
||||||
for i in range(boxes.shape[0]):
|
|
||||||
logger.debug("new object detected: %s", str(boxes[i]))
|
|
||||||
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
|
|
||||||
objects_msg.objects.extend(objs)
|
|
||||||
objects_msg.frame_ref.name = frame_ref.name
|
|
||||||
objects_msg.frame_ref.id = frame_ref.id
|
|
||||||
objects_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
|
|
||||||
logger.debug("publish object event to %s", self._objects_topic)
|
|
||||||
self._mqtt_client.publish(topic=self._objects_topic,
|
|
||||||
payload=objects_msg.SerializeToString(),
|
|
||||||
qos=0,
|
|
||||||
retain=False)
|
|
||||||
|
|
||||||
|
|
||||||
class FrameProcessError(Exception):
|
|
||||||
"""
|
|
||||||
Error base for invalid frame processing
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
message -- explanation of the error
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, message: str):
|
|
||||||
"""
|
|
||||||
:param message: explanation of the error
|
|
||||||
"""
|
|
||||||
self.message = message
|
|
||||||
|
|
||||||
|
|
||||||
class FrameProcessor:
|
|
||||||
"""
|
|
||||||
Processor for camera frames
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
|
|
||||||
self._mqtt_client = mqtt_client
|
|
||||||
self._frame_topic = frame_topic
|
|
||||||
|
|
||||||
def process(self, img: dai.ImgFrame) -> typing.Any:
|
|
||||||
"""
|
|
||||||
Publish camera frames
|
|
||||||
:param img: image read from camera
|
|
||||||
:return:
|
|
||||||
id frame reference
|
|
||||||
:raise:
|
|
||||||
FrameProcessError if frame can't be processed
|
|
||||||
"""
|
|
||||||
im_resize = img.getCvFrame()
|
|
||||||
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
|
|
||||||
if not is_success:
|
|
||||||
raise FrameProcessError("unable to process to encode frame to jpg")
|
|
||||||
byte_im = im_buf_arr.tobytes()
|
|
||||||
|
|
||||||
now = datetime.datetime.now()
|
|
||||||
frame_msg = evt.FrameMessage()
|
|
||||||
frame_msg.id.name = "robocar-oak-camera-oak"
|
|
||||||
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
|
||||||
frame_msg.id.created_at.FromDatetime(now)
|
|
||||||
frame_msg.frame = byte_im
|
|
||||||
logger.debug("publish frame event to %s", self._frame_topic)
|
|
||||||
self._mqtt_client.publish(topic=self._frame_topic,
|
|
||||||
payload=frame_msg.SerializeToString(),
|
|
||||||
qos=0,
|
|
||||||
retain=False)
|
|
||||||
return frame_msg.id
|
|
||||||
|
|
||||||
|
|
||||||
class Source(abc.ABC):
|
|
||||||
"""Base class for image source"""
|
|
||||||
|
|
||||||
@abc.abstractmethod
|
|
||||||
def get_stream_name(self) -> str:
|
|
||||||
"""
|
|
||||||
Queue/stream name to use to get data
|
|
||||||
|
|
||||||
:return: steam name
|
|
||||||
"""
|
|
||||||
|
|
||||||
@abc.abstractmethod
|
|
||||||
def link(self, input_node: dai.Node.Input) -> None:
|
|
||||||
"""
|
|
||||||
Link this source to the input node
|
|
||||||
|
|
||||||
:param: input_node: input node to link
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class ObjectDetectionNN:
|
|
||||||
"""
|
|
||||||
Node to detect objects into image
|
|
||||||
|
|
||||||
Read image as input and apply resize transformation before to run NN on it
|
|
||||||
Result is available with 'get_stream_name()' stream
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, pipeline: dai.Pipeline):
|
|
||||||
# Define a neural network that will make predictions based on the source frames
|
|
||||||
detection_nn = pipeline.createNeuralNetwork()
|
|
||||||
detection_nn.setBlobPath(pathlib.Path(_NN_PATH))
|
|
||||||
detection_nn.setNumPoolFrames(4)
|
|
||||||
detection_nn.input.setBlocking(False)
|
|
||||||
detection_nn.setNumInferenceThreads(2)
|
|
||||||
self._detection_nn = detection_nn
|
|
||||||
self._xout = self._configure_xout_nn(pipeline)
|
|
||||||
self._detection_nn.out.link(self._xout.input)
|
|
||||||
self._manip_image = self._configure_manip(pipeline)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
|
|
||||||
# Resize image
|
|
||||||
manip = pipeline.createImageManip()
|
|
||||||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
|
||||||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
|
||||||
manip.initialConfig.setKeepAspectRatio(False)
|
|
||||||
return manip
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
|
||||||
xout_nn = pipeline.createXLinkOut()
|
|
||||||
xout_nn.setStreamName("nn")
|
|
||||||
xout_nn.input.setBlocking(False)
|
|
||||||
return xout_nn
|
|
||||||
|
|
||||||
def get_stream_name(self) -> str:
|
|
||||||
"""
|
|
||||||
Queue/stream name to use to get data
|
|
||||||
|
|
||||||
:return: stream name
|
|
||||||
"""
|
|
||||||
return self._xout.getStreamName()
|
|
||||||
|
|
||||||
def get_input(self) -> dai.Node.Input:
|
|
||||||
"""
|
|
||||||
Get input node to use to link with source node
|
|
||||||
:return: input to link with source output, see Source.link()
|
|
||||||
"""
|
|
||||||
return self._manip_image.inputImage
|
|
||||||
|
|
||||||
|
|
||||||
class CameraSource(Source):
|
|
||||||
"""Image source based on camera preview"""
|
|
||||||
|
|
||||||
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int):
|
|
||||||
cam_rgb = pipeline.createColorCamera()
|
|
||||||
xout_rgb = pipeline.createXLinkOut()
|
|
||||||
xout_rgb.setStreamName("rgb")
|
|
||||||
|
|
||||||
self._cam_rgb = cam_rgb
|
|
||||||
self._xout_rgb = xout_rgb
|
|
||||||
|
|
||||||
# Properties
|
|
||||||
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
|
||||||
cam_rgb.setPreviewSize(width=img_width, height=img_height)
|
|
||||||
cam_rgb.setInterleaved(False)
|
|
||||||
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
|
||||||
cam_rgb.setFps(30)
|
|
||||||
|
|
||||||
# link camera preview to output
|
|
||||||
cam_rgb.preview.link(xout_rgb.input)
|
|
||||||
|
|
||||||
def link(self, input_node: dai.Node.Input) -> None:
|
|
||||||
self._cam_rgb.preview.link(input_node)
|
|
||||||
|
|
||||||
def get_stream_name(self) -> str:
|
|
||||||
return self._xout_rgb.getStreamName()
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class MqttConfig:
|
|
||||||
"""MQTT configuration"""
|
|
||||||
host: str
|
|
||||||
topic: str
|
|
||||||
port: int = 1883
|
|
||||||
qos: int = 0
|
|
||||||
|
|
||||||
|
|
||||||
class MqttSource(Source):
|
|
||||||
"""Image source based onto mqtt stream"""
|
|
||||||
|
|
||||||
def __init__(self, device: Device, pipeline: dai.Pipeline, mqtt_config: MqttConfig):
|
|
||||||
self._mqtt_config = mqtt_config
|
|
||||||
self._client = mqtt.Client()
|
|
||||||
self._client.user_data_set(mqtt_config)
|
|
||||||
self._client.on_connect = self._on_connect
|
|
||||||
self._client.on_message = self._on_message
|
|
||||||
|
|
||||||
self._img_in = pipeline.createXLinkIn()
|
|
||||||
self._img_in.setStreamName("img_input")
|
|
||||||
self._img_out = pipeline.createXLinkOut()
|
|
||||||
self._img_out.setStreamName("img_output")
|
|
||||||
self._img_in.out.link(self._img_out.input)
|
|
||||||
|
|
||||||
self._img_in_queue = device.getInputQueue(self._img_in.getStreamName())
|
|
||||||
|
|
||||||
def run(self) -> None:
|
|
||||||
""" Connect and start mqtt loop """
|
|
||||||
self._client.connect(host=self._mqtt_config.host, port=self._mqtt_config.port)
|
|
||||||
self._client.loop_start()
|
|
||||||
|
|
||||||
def stop(self) -> None:
|
|
||||||
"""Stop and disconnect mqtt loop"""
|
|
||||||
self._client.loop_stop()
|
|
||||||
self._client.disconnect()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
# pylint: disable=unused-argument
|
|
||||||
def _on_connect(client: mqtt.Client, userdata: MqttConfig, flags: typing.Any,
|
|
||||||
result_connection: typing.Any) -> None:
|
|
||||||
# if we lose the connection and reconnect then subscriptions will be renewed.
|
|
||||||
client.subscribe(topic=userdata.topic, qos=userdata.qos)
|
|
||||||
|
|
||||||
# pylint: disable=unused-argument
|
|
||||||
def _on_message(self, _: mqtt.Client, user_data: MqttConfig, msg: mqtt.MQTTMessage) -> None:
|
|
||||||
frame_msg = evt.FrameMessage()
|
|
||||||
frame_msg.ParseFromString(msg.payload)
|
|
||||||
|
|
||||||
frame = np.asarray(frame_msg.frame, dtype="uint8")
|
|
||||||
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
|
|
||||||
nn_data = dai.NNData()
|
|
||||||
nn_data.setLayer("data", _to_planar(frame, (300, 300)))
|
|
||||||
self._img_in_queue.send(nn_data)
|
|
||||||
|
|
||||||
def get_stream_name(self) -> str:
|
|
||||||
return self._img_out.getStreamName()
|
|
||||||
|
|
||||||
def link(self, input_node: dai.Node.Input) -> None:
|
|
||||||
self._img_in.out.link(input_node)
|
|
||||||
|
|
||||||
|
|
||||||
def _to_planar(arr: npt.NDArray[np.uint8], shape: tuple[int, int]) -> list[int]:
|
|
||||||
return [val for channel in cv2.resize(arr, shape).transpose(2, 0, 1) for y_col in channel for val in y_col]
|
|
||||||
|
|
||||||
|
|
||||||
class PipelineController:
|
|
||||||
"""
|
|
||||||
Pipeline controller that drive camera device
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, frame_processor: FrameProcessor,
|
|
||||||
object_processor: ObjectProcessor, camera: Source, object_node: ObjectDetectionNN):
|
|
||||||
self._pipeline = self._configure_pipeline()
|
|
||||||
self._frame_processor = frame_processor
|
|
||||||
self._object_processor = object_processor
|
|
||||||
self._camera = camera
|
|
||||||
self._object_node = object_node
|
|
||||||
self._stop = False
|
|
||||||
|
|
||||||
def _configure_pipeline(self) -> dai.Pipeline:
|
|
||||||
logger.info("configure pipeline")
|
|
||||||
pipeline = dai.Pipeline()
|
|
||||||
|
|
||||||
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
|
||||||
|
|
||||||
# Link preview to manip and manip to nn
|
|
||||||
self._camera.link(self._object_node.get_input())
|
|
||||||
|
|
||||||
logger.info("pipeline configured")
|
|
||||||
return pipeline
|
|
||||||
|
|
||||||
def run(self) -> None:
|
|
||||||
"""
|
|
||||||
Start event loop
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
# Connect to device and start pipeline
|
|
||||||
with Device(pipeline=self._pipeline) as dev:
|
|
||||||
logger.info('MxId: %s', dev.getDeviceInfo().getMxId())
|
|
||||||
logger.info('USB speed: %s', dev.getUsbSpeed())
|
|
||||||
logger.info('Connected cameras: %s', str(dev.getConnectedCameras()))
|
|
||||||
logger.info("output queues found: %s", str(''.join(dev.getOutputQueueNames()))) # type: ignore
|
|
||||||
|
|
||||||
dev.startPipeline()
|
|
||||||
# Queues
|
|
||||||
queue_size = 4
|
|
||||||
q_rgb = dev.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, # type: ignore
|
|
||||||
blocking=False)
|
|
||||||
q_nn = dev.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, # type: ignore
|
|
||||||
blocking=False)
|
|
||||||
|
|
||||||
self._stop = False
|
|
||||||
while True:
|
|
||||||
if self._stop:
|
|
||||||
logger.info("stop loop event")
|
|
||||||
return
|
|
||||||
try:
|
|
||||||
self._loop_on_camera_events(q_nn, q_rgb)
|
|
||||||
# pylint: disable=broad-except # bad frame or event must not stop loop
|
|
||||||
except Exception as ex:
|
|
||||||
logger.exception("unexpected error: %s", str(ex))
|
|
||||||
|
|
||||||
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue) -> None:
|
|
||||||
logger.debug("wait for new frame")
|
|
||||||
|
|
||||||
# Wait for frame
|
|
||||||
in_rgb: dai.ImgFrame = q_rgb.get() # type: ignore # blocking call, will wait until a new data has arrived
|
|
||||||
try:
|
|
||||||
frame_ref = self._frame_processor.process(in_rgb)
|
|
||||||
except FrameProcessError as ex:
|
|
||||||
logger.error("unable to process frame: %s", str(ex))
|
|
||||||
return
|
|
||||||
# Read NN result
|
|
||||||
in_nn: dai.NNData = q_nn.get() # type: ignore
|
|
||||||
self._object_processor.process(in_nn, frame_ref)
|
|
||||||
|
|
||||||
def stop(self) -> None:
|
|
||||||
"""
|
|
||||||
Stop event loop, if loop is not running, do nothing
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
self._stop = True
|
|
||||||
|
|
||||||
|
|
||||||
def _bbox_to_object(bbox: npt.NDArray[np.float64], score: float) -> evt.Object:
|
|
||||||
obj = evt.Object()
|
|
||||||
obj.type = evt.TypeObject.ANY
|
|
||||||
obj.top = bbox[0].astype(float)
|
|
||||||
obj.right = bbox[3].astype(float)
|
|
||||||
obj.bottom = bbox[2].astype(float)
|
|
||||||
obj.left = bbox[1].astype(float)
|
|
||||||
obj.confidence = score
|
|
||||||
return obj
|
|
666
camera/oak_pipeline.py
Normal file
666
camera/oak_pipeline.py
Normal file
@ -0,0 +1,666 @@
|
|||||||
|
"""
|
||||||
|
Camera event loop
|
||||||
|
"""
|
||||||
|
import abc
|
||||||
|
import datetime
|
||||||
|
import logging
|
||||||
|
import pathlib
|
||||||
|
import time
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List, Any
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import depthai as dai
|
||||||
|
import events.events_pb2 as evt
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
import paho.mqtt.client as mqtt
|
||||||
|
from depthai import Device
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
|
||||||
|
_NN_WIDTH = 192
|
||||||
|
_NN_HEIGHT = 192
|
||||||
|
|
||||||
|
_PREVIEW_WIDTH = 640
|
||||||
|
_PREVIEW_HEIGHT = 480
|
||||||
|
|
||||||
|
_CAMERA_BASELINE_IN_MM = 75
|
||||||
|
|
||||||
|
|
||||||
|
class ObjectProcessor:
|
||||||
|
"""
|
||||||
|
Processor for Object detection
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
|
||||||
|
self._mqtt_client = mqtt_client
|
||||||
|
self._objects_topic = objects_topic
|
||||||
|
self._objects_threshold = objects_threshold
|
||||||
|
|
||||||
|
def process(self, in_nn: dai.NNData, frame_ref: evt.FrameRef) -> None:
|
||||||
|
"""
|
||||||
|
Parse and publish result of NeuralNetwork result
|
||||||
|
:param in_nn: NeuralNetwork result read from device
|
||||||
|
:param frame_ref: Id of the frame where objects are been detected
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
|
||||||
|
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
|
||||||
|
# keep boxes bigger than threshold
|
||||||
|
mask = detection_scores >= self._objects_threshold
|
||||||
|
boxes = detection_boxes[mask]
|
||||||
|
scores = detection_scores[mask]
|
||||||
|
|
||||||
|
if boxes.shape[0] > 0:
|
||||||
|
self._publish_objects(boxes, frame_ref, scores)
|
||||||
|
|
||||||
|
def _publish_objects(self, boxes: npt.NDArray[np.float64], frame_ref: evt.FrameRef, scores: npt.NDArray[np.float64]) -> None:
|
||||||
|
objects_msg = evt.ObjectsMessage()
|
||||||
|
objs = []
|
||||||
|
for i in range(boxes.shape[0]):
|
||||||
|
logger.debug("new object detected: %s", str(boxes[i]))
|
||||||
|
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
|
||||||
|
objects_msg.objects.extend(objs)
|
||||||
|
objects_msg.frame_ref.name = frame_ref.name
|
||||||
|
objects_msg.frame_ref.id = frame_ref.id
|
||||||
|
objects_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
|
||||||
|
logger.debug("publish object event to %s", self._objects_topic)
|
||||||
|
self._mqtt_client.publish(topic=self._objects_topic,
|
||||||
|
payload=objects_msg.SerializeToString(),
|
||||||
|
qos=0,
|
||||||
|
retain=False)
|
||||||
|
|
||||||
|
|
||||||
|
class FrameProcessError(Exception):
|
||||||
|
"""
|
||||||
|
Error base for invalid frame processing
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
message -- explanation of the error
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, message: str):
|
||||||
|
"""
|
||||||
|
:param message: explanation of the error
|
||||||
|
"""
|
||||||
|
self.message = message
|
||||||
|
|
||||||
|
|
||||||
|
class FrameProcessor:
|
||||||
|
"""
|
||||||
|
Processor for camera frames
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
|
||||||
|
self._mqtt_client = mqtt_client
|
||||||
|
self._frame_topic = frame_topic
|
||||||
|
|
||||||
|
def process(self, img: dai.ImgFrame) -> Any:
|
||||||
|
"""
|
||||||
|
Publish camera frames
|
||||||
|
:param img: image read from camera
|
||||||
|
:return:
|
||||||
|
id frame reference
|
||||||
|
:raise:
|
||||||
|
FrameProcessError if frame can't be processed
|
||||||
|
"""
|
||||||
|
im_resize = img.getCvFrame()
|
||||||
|
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
|
||||||
|
if not is_success:
|
||||||
|
raise FrameProcessError("unable to process to encode frame to jpg")
|
||||||
|
byte_im = im_buf_arr.tobytes()
|
||||||
|
|
||||||
|
now = datetime.datetime.now()
|
||||||
|
frame_msg = evt.FrameMessage()
|
||||||
|
frame_msg.id.name = "robocar-oak-camera-oak"
|
||||||
|
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
||||||
|
frame_msg.id.created_at.FromDatetime(now)
|
||||||
|
frame_msg.frame = byte_im
|
||||||
|
logger.debug("publish frame event to %s", self._frame_topic)
|
||||||
|
self._mqtt_client.publish(topic=self._frame_topic,
|
||||||
|
payload=frame_msg.SerializeToString(),
|
||||||
|
qos=0,
|
||||||
|
retain=False)
|
||||||
|
return frame_msg.id
|
||||||
|
|
||||||
|
|
||||||
|
class DisparityProcessor:
|
||||||
|
"""
|
||||||
|
Processor for camera frames
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, mqtt_client: mqtt.Client, disparity_topic: str):
|
||||||
|
self._mqtt_client = mqtt_client
|
||||||
|
self._disparity_topic = disparity_topic
|
||||||
|
|
||||||
|
def process(self, img: dai.ImgFrame, frame_ref: evt.FrameRef, focal_length_in_pixels: float,
|
||||||
|
baseline_mm: float = _CAMERA_BASELINE_IN_MM) -> None:
|
||||||
|
im_frame = img.getCvFrame()
|
||||||
|
is_success, im_buf_arr = cv2.imencode(".jpg", im_frame)
|
||||||
|
if not is_success:
|
||||||
|
raise FrameProcessError("unable to process to encode frame to jpg")
|
||||||
|
byte_im = im_buf_arr.tobytes()
|
||||||
|
|
||||||
|
disparity_msg = evt.DisparityMessage()
|
||||||
|
disparity_msg.disparity = byte_im
|
||||||
|
disparity_msg.frame_ref.name = frame_ref.name
|
||||||
|
disparity_msg.frame_ref.id = frame_ref.id
|
||||||
|
disparity_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
|
||||||
|
disparity_msg.focal_length_in_pixels = focal_length_in_pixels
|
||||||
|
disparity_msg.baseline_in_mm = baseline_mm
|
||||||
|
|
||||||
|
self._mqtt_client.publish(topic=self._disparity_topic,
|
||||||
|
payload=disparity_msg.SerializeToString(),
|
||||||
|
qos=0,
|
||||||
|
retain=False)
|
||||||
|
|
||||||
|
|
||||||
|
class Source(abc.ABC):
|
||||||
|
"""Base class for image source"""
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def get_stream_name(self) -> str:
|
||||||
|
"""
|
||||||
|
Queue/stream name to use to get data
|
||||||
|
|
||||||
|
:return: steam name
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def link(self, input_node: dai.Node.Input) -> None:
|
||||||
|
"""
|
||||||
|
Link this source to the input node
|
||||||
|
|
||||||
|
:param: input_node: input node to link
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class ObjectDetectionNN:
|
||||||
|
"""
|
||||||
|
Node to detect objects into image
|
||||||
|
|
||||||
|
Read image as input and apply resize transformation before to run NN on it
|
||||||
|
Result is available with 'get_stream_name()' stream
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, pipeline: dai.Pipeline):
|
||||||
|
# Define a neural network that will make predictions based on the source frames
|
||||||
|
detection_nn = pipeline.createNeuralNetwork()
|
||||||
|
detection_nn.setBlobPath(pathlib.Path(_NN_PATH))
|
||||||
|
detection_nn.setNumPoolFrames(4)
|
||||||
|
detection_nn.input.setBlocking(False)
|
||||||
|
detection_nn.setNumInferenceThreads(2)
|
||||||
|
self._detection_nn = detection_nn
|
||||||
|
self._xout = self._configure_xout_nn(pipeline)
|
||||||
|
self._detection_nn.out.link(self._xout.input)
|
||||||
|
self._manip_image = self._configure_manip(pipeline)
|
||||||
|
self._manip_image.out.link(self._detection_nn.input)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
|
||||||
|
# Resize image
|
||||||
|
manip = pipeline.createImageManip()
|
||||||
|
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||||||
|
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||||
|
manip.initialConfig.setKeepAspectRatio(False)
|
||||||
|
return manip
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||||||
|
xout_nn = pipeline.createXLinkOut()
|
||||||
|
xout_nn.setStreamName("nn")
|
||||||
|
xout_nn.input.setBlocking(False)
|
||||||
|
return xout_nn
|
||||||
|
|
||||||
|
def get_stream_name(self) -> str:
|
||||||
|
"""
|
||||||
|
Queue/stream name to use to get data
|
||||||
|
|
||||||
|
:return: stream name
|
||||||
|
"""
|
||||||
|
return self._xout.getStreamName()
|
||||||
|
|
||||||
|
def get_input(self) -> dai.Node.Input:
|
||||||
|
"""
|
||||||
|
Get input node to use to link with source node
|
||||||
|
:return: input to link with source output, see Source.link()
|
||||||
|
"""
|
||||||
|
return self._manip_image.inputImage
|
||||||
|
|
||||||
|
|
||||||
|
class CameraSource(Source):
|
||||||
|
"""Image source based on camera preview"""
|
||||||
|
|
||||||
|
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int, fps: int):
|
||||||
|
self._cam_rgb = pipeline.createColorCamera()
|
||||||
|
self._xout_rgb = pipeline.createXLinkOut()
|
||||||
|
self._xout_rgb.setStreamName("rgb")
|
||||||
|
|
||||||
|
# Properties
|
||||||
|
self._cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||||
|
self._cam_rgb.setPreviewSize(width=_PREVIEW_WIDTH, height=_PREVIEW_HEIGHT)
|
||||||
|
self._cam_rgb.setInterleaved(False)
|
||||||
|
self._cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||||||
|
self._cam_rgb.setFps(fps)
|
||||||
|
self._resize_manip = self._configure_manip(pipeline=pipeline, img_width=img_width, img_height=img_height)
|
||||||
|
|
||||||
|
# link camera preview to output
|
||||||
|
self._cam_rgb.preview.link(self._resize_manip.inputImage)
|
||||||
|
self._resize_manip.out.link(self._xout_rgb.input)
|
||||||
|
|
||||||
|
def link(self, input_node: dai.Node.Input) -> None:
|
||||||
|
self._cam_rgb.preview.link(input_node)
|
||||||
|
|
||||||
|
def get_stream_name(self) -> str:
|
||||||
|
return self._xout_rgb.getStreamName()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _configure_manip(pipeline: dai.Pipeline, img_width: int, img_height: int) -> dai.node.ImageManip:
|
||||||
|
# Resize image
|
||||||
|
manip = pipeline.createImageManip()
|
||||||
|
manip.initialConfig.setResize(img_width, img_height)
|
||||||
|
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||||
|
manip.initialConfig.setKeepAspectRatio(False)
|
||||||
|
return manip
|
||||||
|
|
||||||
|
|
||||||
|
class StereoDepthPostFilter(abc.ABC):
|
||||||
|
@abc.abstractmethod
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class MedianFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
This is a non-edge preserving Median filter, which can be used to reduce noise and smoothen the depth map.
|
||||||
|
Median filter is implemented in hardware, so it’s the fastest filter.
|
||||||
|
"""
|
||||||
|
def __init__(self, value: dai.MedianFilter = dai.MedianFilter.KERNEL_7x7) -> None:
|
||||||
|
self._value = value
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.median.value = self._value
|
||||||
|
|
||||||
|
|
||||||
|
class SpeckleFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
Speckle Filter is used to reduce the speckle noise. Speckle noise is a region with huge variance between
|
||||||
|
neighboring disparity/depth pixels, and speckle filter tries to filter this region.
|
||||||
|
"""
|
||||||
|
def __init__(self, enable: bool = True, speckle_range: int = 50) -> None:
|
||||||
|
"""
|
||||||
|
:param enable: Whether to enable or disable the filter.
|
||||||
|
:param speckle_range: Speckle search range.
|
||||||
|
"""
|
||||||
|
self._enable = enable
|
||||||
|
self._speckle_range = speckle_range
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.speckleFilter.enable = self._enable
|
||||||
|
config.postProcessing.speckleFilter.speckleRange = self._speckle_range
|
||||||
|
|
||||||
|
|
||||||
|
class TemporalFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
Temporal Filter is intended to improve the depth data persistency by manipulating per-pixel values based on
|
||||||
|
previous frames. The filter performs a single pass on the data, adjusting the depth values while also updating the
|
||||||
|
tracking history. In cases where the pixel data is missing or invalid, the filter uses a user-defined persistency
|
||||||
|
mode to decide whether the missing value should be rectified with stored data. Note that due to its reliance on
|
||||||
|
historic data the filter may introduce visible blurring/smearing artifacts, and therefore is best-suited for
|
||||||
|
static scenes.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
enable: bool = True,
|
||||||
|
persistencyMode: dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_4,
|
||||||
|
alpha: float = 0.4,
|
||||||
|
delta: int = 0):
|
||||||
|
"""
|
||||||
|
:param enable: Whether to enable or disable the filter.
|
||||||
|
:param persistencyMode: Persistency mode. If the current disparity/depth value is invalid, it will be replaced
|
||||||
|
by an older value, based on persistency mode.
|
||||||
|
:param alpha: The Alpha factor in an exponential moving average with Alpha=1 - no filter.
|
||||||
|
Alpha = 0 - infinite filter. Determines the extent of the temporal history that should be averaged.
|
||||||
|
:param delta: Step-size boundary. Establishes the threshold used to preserve surfaces (edges).
|
||||||
|
If the disparity value between neighboring pixels exceed the disparity threshold set by this delta parameter,
|
||||||
|
then filtering will be temporarily disabled. Default value 0 means auto: 3 disparity integer levels.
|
||||||
|
In case of subpixel mode it’s 3*number of subpixel levels.
|
||||||
|
"""
|
||||||
|
self._enable = enable
|
||||||
|
self._persistencyMode = persistencyMode
|
||||||
|
self._alpha = alpha
|
||||||
|
self._delta = delta
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.temporalFilter.enable = self._enable
|
||||||
|
config.postProcessing.temporalFilter.persistencyMode = self._persistencyMode
|
||||||
|
config.postProcessing.temporalFilter.alpha = self._alpha
|
||||||
|
config.postProcessing.temporalFilter.delta = self._delta
|
||||||
|
|
||||||
|
|
||||||
|
class SpatialFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
Spatial Edge-Preserving Filter will fill invalid depth pixels with valid neighboring depth pixels. It performs a
|
||||||
|
series of 1D horizontal and vertical passes or iterations, to enhance the smoothness of the reconstructed data.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
enable: bool = True,
|
||||||
|
hole_filling_radius: int = 2,
|
||||||
|
alpha: float = 0.5,
|
||||||
|
delta: int = 0,
|
||||||
|
num_iterations: int = 1):
|
||||||
|
"""
|
||||||
|
:param enable: Whether to enable or disable the filter.
|
||||||
|
:param hole_filling_radius: An in-place heuristic symmetric hole-filling mode applied horizontally during
|
||||||
|
the filter passes. Intended to rectify minor artefacts with minimal performance impact. Search radius for
|
||||||
|
hole filling.
|
||||||
|
:param alpha: The Alpha factor in an exponential moving average with Alpha=1 - no filter.
|
||||||
|
Alpha = 0 - infinite filter. Determines the amount of smoothing.
|
||||||
|
:param delta: Step-size boundary. Establishes the threshold used to preserve “edges”. If the disparity value
|
||||||
|
between neighboring pixels exceed the disparity threshold set by this delta parameter, then filtering will be
|
||||||
|
temporarily disabled. Default value 0 means auto: 3 disparity integer levels. In case of subpixel mode it’s
|
||||||
|
3*number of subpixel levels.
|
||||||
|
:param num_iterations: Number of iterations over the image in both horizontal and vertical direction.
|
||||||
|
"""
|
||||||
|
self._enable = enable
|
||||||
|
self._hole_filling_radius = hole_filling_radius
|
||||||
|
self._alpha = alpha
|
||||||
|
self._delta = delta
|
||||||
|
self._num_iterations = num_iterations
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.spatialFilter.enable = self._enable
|
||||||
|
config.postProcessing.spatialFilter.holeFillingRadius = self._hole_filling_radius
|
||||||
|
config.postProcessing.spatialFilter.alpha = self._alpha
|
||||||
|
config.postProcessing.spatialFilter.delta = self._delta
|
||||||
|
config.postProcessing.spatialFilter.numIterations = self._num_iterations
|
||||||
|
|
||||||
|
|
||||||
|
class ThresholdFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
Threshold Filter filters out all disparity/depth pixels outside the configured min/max threshold values.
|
||||||
|
"""
|
||||||
|
def __init__(self, min_range: int = 400, max_range: int = 15000):
|
||||||
|
"""
|
||||||
|
:param min_range: Minimum range in depth units. Depth values under this value are invalidated.
|
||||||
|
:param max_range: Maximum range in depth units. Depth values over this value are invalidated.
|
||||||
|
"""
|
||||||
|
self._min_range = min_range
|
||||||
|
self._max_range = max_range
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.thresholdFilter.minRange = self._min_range
|
||||||
|
config.postProcessing.thresholdFilter.maxRange = self._max_range
|
||||||
|
|
||||||
|
|
||||||
|
class DecimationFilter(StereoDepthPostFilter):
|
||||||
|
"""
|
||||||
|
Decimation Filter will sub-samples the depth map, which means it reduces the depth scene complexity and allows
|
||||||
|
other filters to run faster. Setting decimationFactor to 2 will downscale 1280x800 depth map to 640x400.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
decimation_factor: int = 1,
|
||||||
|
decimation_mode: dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode = dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.PIXEL_SKIPPING
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
:param decimation_factor: Decimation factor. Valid values are 1,2,3,4. Disparity/depth map x/y resolution will
|
||||||
|
be decimated with this value.
|
||||||
|
:param decimation_mode: Decimation algorithm type.
|
||||||
|
"""
|
||||||
|
self._decimation_factor = decimation_factor
|
||||||
|
self._mode = decimation_mode
|
||||||
|
|
||||||
|
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||||||
|
config.postProcessing.decimationFilter.decimationFactor = self._decimation_factor
|
||||||
|
config.postProcessing.decimationFilter.decimationMode = self._mode
|
||||||
|
|
||||||
|
|
||||||
|
class DepthSource(Source):
|
||||||
|
def __init__(self, pipeline: dai.Pipeline,
|
||||||
|
extended_disparity: bool = False,
|
||||||
|
subpixel: bool = False,
|
||||||
|
lr_check: bool = True,
|
||||||
|
stereo_filters: List[StereoDepthPostFilter] = []
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
# Closer-in minimum depth, disparity range is doubled (from 95 to 190):
|
||||||
|
extended_disparity = False
|
||||||
|
# Better accuracy for longer distance, fractional disparity 32-levels:
|
||||||
|
subpixel = False
|
||||||
|
# Better handling for occlusions:
|
||||||
|
lr_check = True
|
||||||
|
"""
|
||||||
|
self._monoLeft = pipeline.create(dai.node.MonoCamera)
|
||||||
|
self._monoRight = pipeline.create(dai.node.MonoCamera)
|
||||||
|
self._depth = pipeline.create(dai.node.StereoDepth)
|
||||||
|
self._xout_disparity = pipeline.create(dai.node.XLinkOut)
|
||||||
|
|
||||||
|
self._xout_disparity.setStreamName("disparity")
|
||||||
|
|
||||||
|
# Properties
|
||||||
|
self._monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
|
||||||
|
self._monoLeft.setCamera("left")
|
||||||
|
self._monoLeft.out.link(self._depth.left)
|
||||||
|
self._monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
|
||||||
|
self._monoRight.setCamera("right")
|
||||||
|
self._monoRight.out.link(self._depth.right)
|
||||||
|
|
||||||
|
# Create a node that will produce the depth map
|
||||||
|
# (using disparity output as it's easier to visualize depth this way)
|
||||||
|
self._depth.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
|
||||||
|
# Options: MEDIAN_OFF, KERNEL_3x3, KERNEL_5x5, KERNEL_7x7 (default)
|
||||||
|
self._depth.initialConfig.setMedianFilter(dai.MedianFilter.KERNEL_7x7)
|
||||||
|
self._depth.setLeftRightCheck(lr_check)
|
||||||
|
self._depth.setExtendedDisparity(extended_disparity)
|
||||||
|
self._depth.setSubpixel(subpixel)
|
||||||
|
self._depth.disparity.link(self._xout_disparity.input)
|
||||||
|
|
||||||
|
if len(stereo_filters) > 0:
|
||||||
|
# Configure post-processing filters
|
||||||
|
config = self._depth.initialConfig.get()
|
||||||
|
for filter in stereo_filters:
|
||||||
|
filter.apply(config)
|
||||||
|
self._depth.initialConfig.set(config)
|
||||||
|
|
||||||
|
def get_stream_name(self) -> str:
|
||||||
|
return self._xout_disparity.getStreamName()
|
||||||
|
|
||||||
|
def link(self, input_node: dai.Node.Input) -> None:
|
||||||
|
self._depth.disparity.link(input_node)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class MqttConfig:
|
||||||
|
"""MQTT configuration"""
|
||||||
|
host: str
|
||||||
|
topic: str
|
||||||
|
port: int = 1883
|
||||||
|
qos: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
class MqttSource(Source):
|
||||||
|
"""Image source based onto mqtt stream"""
|
||||||
|
|
||||||
|
def __init__(self, device: Device, pipeline: dai.Pipeline, mqtt_config: MqttConfig):
|
||||||
|
self._mqtt_config = mqtt_config
|
||||||
|
self._client = mqtt.Client()
|
||||||
|
self._client.user_data_set(mqtt_config)
|
||||||
|
self._client.on_connect = self._on_connect
|
||||||
|
self._client.on_message = self._on_message
|
||||||
|
|
||||||
|
self._img_in = pipeline.createXLinkIn()
|
||||||
|
self._img_in.setStreamName("img_input")
|
||||||
|
self._img_out = pipeline.createXLinkOut()
|
||||||
|
self._img_out.setStreamName("img_output")
|
||||||
|
self._img_in.out.link(self._img_out.input)
|
||||||
|
|
||||||
|
self._img_in_queue = device.getInputQueue(self._img_in.getStreamName())
|
||||||
|
|
||||||
|
def run(self) -> None:
|
||||||
|
""" Connect and start mqtt loop """
|
||||||
|
self._client.connect(host=self._mqtt_config.host, port=self._mqtt_config.port)
|
||||||
|
self._client.loop_start()
|
||||||
|
|
||||||
|
def stop(self) -> None:
|
||||||
|
"""Stop and disconnect mqtt loop"""
|
||||||
|
self._client.loop_stop()
|
||||||
|
self._client.disconnect()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
# pylint: disable=unused-argument
|
||||||
|
def _on_connect(client: mqtt.Client, userdata: MqttConfig, flags: Any,
|
||||||
|
result_connection: Any) -> None:
|
||||||
|
# if we lose the connection and reconnect then subscriptions will be renewed.
|
||||||
|
client.subscribe(topic=userdata.topic, qos=userdata.qos)
|
||||||
|
|
||||||
|
# pylint: disable=unused-argument
|
||||||
|
def _on_message(self, _: mqtt.Client, user_data: MqttConfig, msg: mqtt.MQTTMessage) -> None:
|
||||||
|
frame_msg = evt.FrameMessage()
|
||||||
|
frame_msg.ParseFromString(msg.payload)
|
||||||
|
|
||||||
|
frame = np.asarray(frame_msg.frame, dtype="uint8")
|
||||||
|
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
|
||||||
|
nn_data = dai.NNData()
|
||||||
|
nn_data.setLayer("data", _to_planar(frame, (300, 300)))
|
||||||
|
self._img_in_queue.send(nn_data)
|
||||||
|
|
||||||
|
def get_stream_name(self) -> str:
|
||||||
|
return self._img_out.getStreamName()
|
||||||
|
|
||||||
|
def link(self, input_node: dai.Node.Input) -> None:
|
||||||
|
self._img_in.out.link(input_node)
|
||||||
|
|
||||||
|
|
||||||
|
def _to_planar(arr: npt.NDArray[np.uint8], shape: tuple[int, int]) -> list[int]:
|
||||||
|
return [val for channel in cv2.resize(arr, shape).transpose(2, 0, 1) for y_col in channel for val in y_col]
|
||||||
|
|
||||||
|
|
||||||
|
class PipelineController:
|
||||||
|
"""
|
||||||
|
Pipeline controller that drive camera device
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, frame_processor: FrameProcessor,
|
||||||
|
object_processor: ObjectProcessor, disparity_processor: DisparityProcessor,
|
||||||
|
camera: Source, depth_source: Source, object_node: ObjectDetectionNN,
|
||||||
|
pipeline: dai.Pipeline):
|
||||||
|
self._frame_processor = frame_processor
|
||||||
|
self._object_processor = object_processor
|
||||||
|
self._disparity_processor = disparity_processor
|
||||||
|
self._camera = camera
|
||||||
|
self._depth_source = depth_source
|
||||||
|
self._object_node = object_node
|
||||||
|
self._stop = False
|
||||||
|
self._pipeline = pipeline
|
||||||
|
self._configure_pipeline()
|
||||||
|
self._focal_length_in_pixels: float | None = None
|
||||||
|
|
||||||
|
def _configure_pipeline(self) -> None:
|
||||||
|
logger.info("configure pipeline")
|
||||||
|
|
||||||
|
self._pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
||||||
|
|
||||||
|
# Link preview to manip and manip to nn
|
||||||
|
self._camera.link(self._object_node.get_input())
|
||||||
|
|
||||||
|
logger.info("pipeline configured")
|
||||||
|
|
||||||
|
def run(self) -> None:
|
||||||
|
"""
|
||||||
|
Start event loop
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
# Connect to device and start pipeline
|
||||||
|
with Device(pipeline=self._pipeline) as dev:
|
||||||
|
logger.info('MxId: %s', dev.getDeviceInfo().getMxId())
|
||||||
|
logger.info('USB speed: %s', dev.getUsbSpeed())
|
||||||
|
logger.info('Connected cameras: %s', str(dev.getConnectedCameras()))
|
||||||
|
logger.info("output queues found: %s", str(''.join(dev.getOutputQueueNames()))) # type: ignore
|
||||||
|
|
||||||
|
calib_data = dev.readCalibration()
|
||||||
|
intrinsics = calib_data.getCameraIntrinsics(dai.CameraBoardSocket.CAM_C)
|
||||||
|
self._focal_length_in_pixels = intrinsics[0][0]
|
||||||
|
logger.info('Right mono camera focal length in pixels: %s', self._focal_length_in_pixels)
|
||||||
|
|
||||||
|
dev.startPipeline()
|
||||||
|
# Queues
|
||||||
|
queue_size = 4
|
||||||
|
q_rgb = dev.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, # type: ignore
|
||||||
|
blocking=False)
|
||||||
|
q_nn = dev.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, # type: ignore
|
||||||
|
blocking=False)
|
||||||
|
if self._disparity_processor is not None:
|
||||||
|
q_disparity = dev.getOutputQueue(name=self._depth_source.get_stream_name(), maxSize=queue_size, # type: ignore
|
||||||
|
blocking=False)
|
||||||
|
else:
|
||||||
|
q_disparity = None
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
counter = 0
|
||||||
|
fps = 0
|
||||||
|
display_time = time.time()
|
||||||
|
self._stop = False
|
||||||
|
while True:
|
||||||
|
if self._stop:
|
||||||
|
logger.info("stop loop event")
|
||||||
|
return
|
||||||
|
try:
|
||||||
|
self._loop_on_camera_events(q_nn, q_rgb, q_disparity)
|
||||||
|
# pylint: disable=broad-except # bad frame or event must not stop loop
|
||||||
|
except Exception as ex:
|
||||||
|
logger.exception("unexpected error: %s", str(ex))
|
||||||
|
|
||||||
|
counter += 1
|
||||||
|
if (time.time() - start_time) > 1:
|
||||||
|
fps = counter / (time.time() - start_time)
|
||||||
|
counter = 0
|
||||||
|
start_time = time.time()
|
||||||
|
if (time.time() - display_time) >= 10:
|
||||||
|
display_time = time.time()
|
||||||
|
logger.info("fps: %s", fps)
|
||||||
|
|
||||||
|
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue, q_disparity: dai.DataOutputQueue) -> None:
|
||||||
|
logger.debug("wait for new frame")
|
||||||
|
|
||||||
|
# Wait for frame
|
||||||
|
in_rgb: dai.ImgFrame = q_rgb.get() # type: ignore # blocking call, will wait until a new data has arrived
|
||||||
|
try:
|
||||||
|
logger.debug("process frame")
|
||||||
|
frame_ref = self._frame_processor.process(in_rgb)
|
||||||
|
except FrameProcessError as ex:
|
||||||
|
logger.error("unable to process frame: %s", str(ex))
|
||||||
|
return
|
||||||
|
logger.debug("frame processed")
|
||||||
|
|
||||||
|
logger.debug("wait for nn response")
|
||||||
|
# Read NN result
|
||||||
|
in_nn: dai.NNData = q_nn.get() # type: ignore
|
||||||
|
logger.debug("process objects")
|
||||||
|
self._object_processor.process(in_nn, frame_ref)
|
||||||
|
logger.debug("objects processed")
|
||||||
|
|
||||||
|
logger.debug("process disparity")
|
||||||
|
if self._disparity_processor is not None:
|
||||||
|
in_disparity: dai.ImgFrame = q_disparity.get() # type: ignore
|
||||||
|
self._disparity_processor.process(in_disparity, frame_ref=frame_ref,
|
||||||
|
focal_length_in_pixels=self._focal_length_in_pixels)
|
||||||
|
logger.debug("disparity processed")
|
||||||
|
|
||||||
|
def stop(self) -> None:
|
||||||
|
"""
|
||||||
|
Stop event loop, if loop is not running, do nothing
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
self._stop = True
|
||||||
|
|
||||||
|
|
||||||
|
def _bbox_to_object(bbox: npt.NDArray[np.float64], score: float) -> evt.Object:
|
||||||
|
obj = evt.Object()
|
||||||
|
obj.type = evt.TypeObject.ANY
|
||||||
|
obj.top = bbox[0].astype(float)
|
||||||
|
obj.right = bbox[3].astype(float)
|
||||||
|
obj.bottom = bbox[2].astype(float)
|
||||||
|
obj.left = bbox[1].astype(float)
|
||||||
|
obj.confidence = score
|
||||||
|
return obj
|
@ -10,7 +10,7 @@ import paho.mqtt.client as mqtt
|
|||||||
import pytest
|
import pytest
|
||||||
import pytest_mock
|
import pytest_mock
|
||||||
|
|
||||||
import camera.depthai
|
from camera.oak_pipeline import DisparityProcessor, ObjectProcessor, FrameProcessor, FrameProcessError
|
||||||
|
|
||||||
Object = dict[str, float]
|
Object = dict[str, float]
|
||||||
|
|
||||||
@ -76,16 +76,16 @@ class TestObjectProcessor:
|
|||||||
return m
|
return m
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def object_processor(self, mqtt_client: mqtt.Client) -> camera.depthai.ObjectProcessor:
|
def object_processor(self, mqtt_client: mqtt.Client) -> ObjectProcessor:
|
||||||
return camera.depthai.ObjectProcessor(mqtt_client, "topic/object", 0.2)
|
return ObjectProcessor(mqtt_client, "topic/object", 0.2)
|
||||||
|
|
||||||
def test_process_without_object(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
|
def test_process_without_object(self, object_processor: ObjectProcessor, mqtt_client: mqtt.Client,
|
||||||
raw_objects_empty: dai.NNData, frame_ref: events.events_pb2.FrameRef) -> None:
|
raw_objects_empty: dai.NNData, frame_ref: events.events_pb2.FrameRef) -> None:
|
||||||
object_processor.process(raw_objects_empty, frame_ref)
|
object_processor.process(raw_objects_empty, frame_ref)
|
||||||
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||||
publish_mock.assert_not_called()
|
publish_mock.assert_not_called()
|
||||||
|
|
||||||
def test_process_with_object_with_low_score(self, object_processor: camera.depthai.ObjectProcessor,
|
def test_process_with_object_with_low_score(self, object_processor: ObjectProcessor,
|
||||||
mqtt_client: mqtt.Client, raw_objects_one: dai.NNData,
|
mqtt_client: mqtt.Client, raw_objects_one: dai.NNData,
|
||||||
frame_ref: events.events_pb2.FrameRef) -> None:
|
frame_ref: events.events_pb2.FrameRef) -> None:
|
||||||
object_processor._objects_threshold = 0.9
|
object_processor._objects_threshold = 0.9
|
||||||
@ -94,7 +94,7 @@ class TestObjectProcessor:
|
|||||||
publish_mock.assert_not_called()
|
publish_mock.assert_not_called()
|
||||||
|
|
||||||
def test_process_with_one_object(self,
|
def test_process_with_one_object(self,
|
||||||
object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
|
object_processor: ObjectProcessor, mqtt_client: mqtt.Client,
|
||||||
raw_objects_one: dai.NNData, frame_ref: events.events_pb2.FrameRef,
|
raw_objects_one: dai.NNData, frame_ref: events.events_pb2.FrameRef,
|
||||||
object1: Object) -> None:
|
object1: Object) -> None:
|
||||||
object_processor.process(raw_objects_one, frame_ref)
|
object_processor.process(raw_objects_one, frame_ref)
|
||||||
@ -120,10 +120,10 @@ class TestObjectProcessor:
|
|||||||
|
|
||||||
class TestFrameProcessor:
|
class TestFrameProcessor:
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def frame_processor(self, mqtt_client: mqtt.Client) -> camera.depthai.FrameProcessor:
|
def frame_processor(self, mqtt_client: mqtt.Client) -> FrameProcessor:
|
||||||
return camera.depthai.FrameProcessor(mqtt_client, "topic/frame")
|
return FrameProcessor(mqtt_client, "topic/frame")
|
||||||
|
|
||||||
def test_process(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
|
def test_process(self, frame_processor: FrameProcessor, mocker: pytest_mock.MockerFixture,
|
||||||
mqtt_client: mqtt.Client) -> None:
|
mqtt_client: mqtt.Client) -> None:
|
||||||
img: dai.ImgFrame = mocker.MagicMock()
|
img: dai.ImgFrame = mocker.MagicMock()
|
||||||
mocker.patch(target="cv2.imencode").return_value = (True, np.array(b"img content"))
|
mocker.patch(target="cv2.imencode").return_value = (True, np.array(b"img content"))
|
||||||
@ -145,12 +145,57 @@ class TestFrameProcessor:
|
|||||||
assert now - datetime.timedelta(
|
assert now - datetime.timedelta(
|
||||||
milliseconds=10) < frame_msg.id.created_at.ToDatetime() < now + datetime.timedelta(milliseconds=10)
|
milliseconds=10) < frame_msg.id.created_at.ToDatetime() < now + datetime.timedelta(milliseconds=10)
|
||||||
|
|
||||||
def test_process_error(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
|
def test_process_error(self, frame_processor: FrameProcessor, mocker: pytest_mock.MockerFixture,
|
||||||
mqtt_client: mqtt.Client) -> None:
|
mqtt_client: mqtt.Client) -> None:
|
||||||
img: dai.ImgFrame = mocker.MagicMock()
|
img: dai.ImgFrame = mocker.MagicMock()
|
||||||
mocker.patch(target="cv2.imencode").return_value = (False, None)
|
mocker.patch(target="cv2.imencode").return_value = (False, None)
|
||||||
|
|
||||||
with pytest.raises(camera.depthai.FrameProcessError) as ex:
|
with pytest.raises(FrameProcessError) as ex:
|
||||||
_ = frame_processor.process(img)
|
_ = frame_processor.process(img)
|
||||||
exception_raised = ex.value
|
exception_raised = ex.value
|
||||||
assert exception_raised.message == "unable to process to encode frame to jpg"
|
assert exception_raised.message == "unable to process to encode frame to jpg"
|
||||||
|
|
||||||
|
|
||||||
|
class TestDisparityProcessor:
|
||||||
|
@pytest.fixture
|
||||||
|
def frame_ref(self) -> events.events_pb2.FrameRef:
|
||||||
|
now = datetime.datetime.now()
|
||||||
|
frame_msg = events.events_pb2.FrameMessage()
|
||||||
|
frame_msg.id.name = "robocar-oak-camera-oak"
|
||||||
|
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
||||||
|
frame_msg.id.created_at.FromDatetime(now)
|
||||||
|
return frame_msg.id
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def disparity_processor(self, mqtt_client: mqtt.Client) -> DisparityProcessor:
|
||||||
|
return DisparityProcessor(mqtt_client, "topic/disparity")
|
||||||
|
|
||||||
|
def test_process(self, disparity_processor: DisparityProcessor, mocker: pytest_mock.MockerFixture,
|
||||||
|
frame_ref: events.events_pb2.FrameRef,
|
||||||
|
mqtt_client: mqtt.Client) -> None:
|
||||||
|
img: dai.ImgFrame = mocker.MagicMock()
|
||||||
|
mocker.patch(target="cv2.imencode").return_value = (True, np.array(b"img content"))
|
||||||
|
|
||||||
|
disparity_processor.process(img, frame_ref, 42)
|
||||||
|
|
||||||
|
pub_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||||
|
pub_mock.assert_called_once_with(payload=unittest.mock.ANY, qos=0, retain=False, topic="topic/disparity")
|
||||||
|
payload = pub_mock.call_args.kwargs['payload']
|
||||||
|
disparity_msg = events.events_pb2.DisparityMessage()
|
||||||
|
disparity_msg.ParseFromString(payload)
|
||||||
|
|
||||||
|
assert disparity_msg.frame_ref == frame_ref
|
||||||
|
assert disparity_msg.disparity == b"img content"
|
||||||
|
assert disparity_msg.focal_length_in_pixels == 42
|
||||||
|
assert disparity_msg.baseline_in_mm == 75
|
||||||
|
|
||||||
|
def test_process_error(self, disparity_processor: DisparityProcessor, mocker: pytest_mock.MockerFixture,
|
||||||
|
frame_ref: events.events_pb2.FrameRef,
|
||||||
|
mqtt_client: mqtt.Client) -> None:
|
||||||
|
img: dai.ImgFrame = mocker.MagicMock()
|
||||||
|
mocker.patch(target="cv2.imencode").return_value = (False, None)
|
||||||
|
|
||||||
|
with pytest.raises(FrameProcessError) as ex:
|
||||||
|
disparity_processor.process(img, frame_ref, 42)
|
||||||
|
exception_raised = ex.value
|
||||||
|
assert exception_raised.message == "unable to process to encode frame to jpg"
|
||||||
|
BIN
camera_tunning/tuning_exp_limit_500us.bin
Normal file
BIN
camera_tunning/tuning_exp_limit_500us.bin
Normal file
Binary file not shown.
BIN
camera_tunning/tuning_exp_limit_8300us.bin
Normal file
BIN
camera_tunning/tuning_exp_limit_8300us.bin
Normal file
Binary file not shown.
2083
poetry.lock
generated
2083
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -9,15 +9,14 @@ packages = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
python = "^3.10"
|
python = "^3.12"
|
||||||
paho-mqtt = "^1.6.1"
|
paho-mqtt = "^1.6"
|
||||||
depthai = "^2.17.4.0"
|
depthai = "^2"
|
||||||
protobuf3 = "^0.2.1"
|
protobuf3 = "^0.2.1"
|
||||||
google = "^3.0.0"
|
google = "^3.0.0"
|
||||||
blobconverter = "^1.3.0"
|
protobuf = "^4.21"
|
||||||
protobuf = "^4.21.8"
|
opencv-python-headless = "^4.6.0"
|
||||||
opencv-python-headless = "^4.6.0.66"
|
robocar-protobuf = {version = "^1.6", source = "robocar"}
|
||||||
robocar-protobuf = { version = "^1.1.1", source = "robocar" }
|
|
||||||
|
|
||||||
|
|
||||||
[tool.poetry.group.test.dependencies]
|
[tool.poetry.group.test.dependencies]
|
||||||
@ -35,8 +34,7 @@ types-protobuf = "^3.20.4.2"
|
|||||||
[[tool.poetry.source]]
|
[[tool.poetry.source]]
|
||||||
name = "robocar"
|
name = "robocar"
|
||||||
url = "https://git.cyrilix.bzh/api/packages/robocars/pypi/simple"
|
url = "https://git.cyrilix.bzh/api/packages/robocars/pypi/simple"
|
||||||
default = false
|
priority = "explicit"
|
||||||
secondary = false
|
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning"]
|
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning"]
|
||||||
|
Loading…
Reference in New Issue
Block a user