robocar-oak-camera/camera/depthai.py
2022-08-02 12:27:48 +02:00

138 lines
5.7 KiB
Python

import datetime
import logging
import paho.mqtt.client as mqtt
import events.events_pb2
import depthai as dai
import cv2
import numpy as np
logger = logging.getLogger(__name__)
# Closer-in minimum depth, disparity range is doubled (from 95 to 190):
extended_disparity = False
# Better accuracy for longer distance, fractional disparity 32-levels:
subpixel = True
# Better handling for occlusions:
lr_check = True
class FramePublisher:
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int):
self._mqtt_client = mqtt_client
self._frame_topic = frame_topic
self._img_width = img_width
self._img_height = img_height
self._depth = None
self._pipeline = self._configure_pipeline()
def _configure_pipeline(self) -> dai.Pipeline:
logger.info("configure pipeline")
pipeline = dai.Pipeline()
cam_rgb = pipeline.create(dai.node.ColorCamera)
xout_rgb = pipeline.create(dai.node.XLinkOut)
xout_rgb.setStreamName("rgb")
monoLeft = pipeline.create(dai.node.MonoCamera)
monoRight = pipeline.create(dai.node.MonoCamera)
depth = pipeline.create(dai.node.StereoDepth)
xout = pipeline.create(dai.node.XLinkOut)
self._depth = depth
xout.setStreamName("disparity")
# Properties
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
# Create a node that will produce the depth map (using disparity output as it's easier to visualize depth this way)
depth.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
# Options: MEDIAN_OFF, KERNEL_3x3, KERNEL_5x5, KERNEL_7x7 (default)
depth.initialConfig.setMedianFilter(dai.MedianFilter.KERNEL_7x7)
depth.setLeftRightCheck(lr_check)
depth.setExtendedDisparity(extended_disparity)
depth.setSubpixel(subpixel)
config = depth.initialConfig.get()
config.postProcessing.speckleFilter.enable = True
config.postProcessing.speckleFilter.speckleRange = 50
config.postProcessing.temporalFilter.enable = False
config.postProcessing.spatialFilter.enable = False
config.postProcessing.spatialFilter.holeFillingRadius = 2
config.postProcessing.spatialFilter.numIterations = 1
#config.postProcessing.thresholdFilter.minRange = 400
#config.postProcessing.thresholdFilter.maxRange = 15000
config.postProcessing.decimationFilter.decimationFactor = 2
depth.initialConfig.set(config)
# Linking
monoLeft.out.link(depth.left)
monoRight.out.link(depth.right)
depth.disparity.link(xout.input)
# Properties
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
cam_rgb.setInterleaved(False)
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
cam_rgb.setFps(30)
# Linking
cam_rgb.preview.link(xout_rgb.input)
logger.info("pipeline configured")
return pipeline
def run(self):
# Connect to device and start pipeline
with dai.Device(self._pipeline) as device:
logger.info('MxId: %s', device.getDeviceInfo().getMxId())
logger.info('USB speed: %s', device.getUsbSpeed())
logger.info('Connected cameras: %s', device.getConnectedCameras())
logger.info("output queues found: %s", device.getOutputQueueNames())
device.startPipeline()
# Queues
queue_size = 4
q_rgb = device.getOutputQueue("rgb", maxSize=queue_size, blocking=False)
# Output queue will be used to get the disparity frames from the outputs defined above
q_disparity = device.getOutputQueue(name="disparity", maxSize=4, blocking=False)
while True:
try:
logger.debug("wait for new frame")
inRgb = q_rgb.get() # blocking call, will wait until a new data has arrived
inDisparity = q_disparity.get()
# im_resize = inRgb.getCvFrame()
im_resize = inDisparity.getCvFrame()
# Normalization for better visualization
im_resize = (im_resize * (255 / self._depth.initialConfig.getMaxDisparity())).astype(np.uint8)
# Available color maps: https://docs.opencv.org/3.4/d3/d50/group__imgproc__colormap.html
# im_resize = cv2.applyColorMap(im_resize, cv2.COLORMAP_JET)
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
byte_im = im_buf_arr.tobytes()
now = datetime.datetime.now()
frame_msg = events.events_pb2.FrameMessage()
frame_msg.id.name = "robocar-oak-camera-oak"
frame_msg.id.id = str(int(now.timestamp() * 1000))
frame_msg.id.created_at.FromDatetime(now)
frame_msg.frame = byte_im
logger.debug("publish frame event to %s", self._frame_topic)
self._mqtt_client.publish(topic=self._frame_topic,
payload=frame_msg.SerializeToString(),
qos=0,
retain=False)
except Exception as e:
logger.exception("unexpected error: %s", str(e))