663 lines
26 KiB
Python
663 lines
26 KiB
Python
"""
|
||
Camera event loop
|
||
"""
|
||
import abc
|
||
import datetime
|
||
import logging
|
||
import pathlib
|
||
import time
|
||
import typing
|
||
from dataclasses import dataclass
|
||
|
||
import cv2
|
||
import depthai as dai
|
||
import events.events_pb2 as evt
|
||
import numpy as np
|
||
import numpy.typing as npt
|
||
import paho.mqtt.client as mqtt
|
||
from depthai import Device
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
|
||
_NN_WIDTH = 192
|
||
_NN_HEIGHT = 192
|
||
|
||
_PREVIEW_WIDTH = 640
|
||
_PREVIEW_HEIGHT = 480
|
||
|
||
_CAMERA_BASELINE_IN_MM = 75
|
||
|
||
|
||
class ObjectProcessor:
|
||
"""
|
||
Processor for Object detection
|
||
"""
|
||
|
||
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
|
||
self._mqtt_client = mqtt_client
|
||
self._objects_topic = objects_topic
|
||
self._objects_threshold = objects_threshold
|
||
|
||
def process(self, in_nn: dai.NNData, frame_ref: evt.FrameRef) -> None:
|
||
"""
|
||
Parse and publish result of NeuralNetwork result
|
||
:param in_nn: NeuralNetwork result read from device
|
||
:param frame_ref: Id of the frame where objects are been detected
|
||
:return:
|
||
"""
|
||
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
|
||
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
|
||
# keep boxes bigger than threshold
|
||
mask = detection_scores >= self._objects_threshold
|
||
boxes = detection_boxes[mask]
|
||
scores = detection_scores[mask]
|
||
|
||
if boxes.shape[0] > 0:
|
||
self._publish_objects(boxes, frame_ref, scores)
|
||
|
||
def _publish_objects(self, boxes: npt.NDArray[np.float64], frame_ref: evt.FrameRef, scores: npt.NDArray[np.float64]) -> None:
|
||
objects_msg = evt.ObjectsMessage()
|
||
objs = []
|
||
for i in range(boxes.shape[0]):
|
||
logger.debug("new object detected: %s", str(boxes[i]))
|
||
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
|
||
objects_msg.objects.extend(objs)
|
||
objects_msg.frame_ref.name = frame_ref.name
|
||
objects_msg.frame_ref.id = frame_ref.id
|
||
objects_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
|
||
logger.debug("publish object event to %s", self._objects_topic)
|
||
self._mqtt_client.publish(topic=self._objects_topic,
|
||
payload=objects_msg.SerializeToString(),
|
||
qos=0,
|
||
retain=False)
|
||
|
||
|
||
class FrameProcessError(Exception):
|
||
"""
|
||
Error base for invalid frame processing
|
||
|
||
Attributes:
|
||
message -- explanation of the error
|
||
"""
|
||
|
||
def __init__(self, message: str):
|
||
"""
|
||
:param message: explanation of the error
|
||
"""
|
||
self.message = message
|
||
|
||
|
||
class FrameProcessor:
|
||
"""
|
||
Processor for camera frames
|
||
"""
|
||
|
||
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
|
||
self._mqtt_client = mqtt_client
|
||
self._frame_topic = frame_topic
|
||
|
||
def process(self, img: dai.ImgFrame) -> typing.Any:
|
||
"""
|
||
Publish camera frames
|
||
:param img: image read from camera
|
||
:return:
|
||
id frame reference
|
||
:raise:
|
||
FrameProcessError if frame can't be processed
|
||
"""
|
||
im_resize = img.getCvFrame()
|
||
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
|
||
if not is_success:
|
||
raise FrameProcessError("unable to process to encode frame to jpg")
|
||
byte_im = im_buf_arr.tobytes()
|
||
|
||
now = datetime.datetime.now()
|
||
frame_msg = evt.FrameMessage()
|
||
frame_msg.id.name = "robocar-oak-camera-oak"
|
||
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
||
frame_msg.id.created_at.FromDatetime(now)
|
||
frame_msg.frame = byte_im
|
||
logger.debug("publish frame event to %s", self._frame_topic)
|
||
self._mqtt_client.publish(topic=self._frame_topic,
|
||
payload=frame_msg.SerializeToString(),
|
||
qos=0,
|
||
retain=False)
|
||
return frame_msg.id
|
||
|
||
|
||
class DisparityProcessor:
|
||
"""
|
||
Processor for camera frames
|
||
"""
|
||
|
||
def __init__(self, mqtt_client: mqtt.Client, disparity_topic: str):
|
||
self._mqtt_client = mqtt_client
|
||
self._disparity_topic = disparity_topic
|
||
|
||
def process(self, img: dai.ImgFrame, frame_ref: evt.FrameRef, focal_length_in_pixels: float,
|
||
baseline_mm: float = _CAMERA_BASELINE_IN_MM) -> None:
|
||
im_frame = img.getCvFrame()
|
||
is_success, im_buf_arr = cv2.imencode(".jpg", im_frame)
|
||
if not is_success:
|
||
raise FrameProcessError("unable to process to encode frame to jpg")
|
||
byte_im = im_buf_arr.tobytes()
|
||
|
||
disparity_msg = evt.DisparityMessage()
|
||
disparity_msg.disparity = byte_im
|
||
disparity_msg.frame_ref.name = frame_ref.name
|
||
disparity_msg.frame_ref.id = frame_ref.id
|
||
disparity_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
|
||
disparity_msg.focal_length_in_pixels = focal_length_in_pixels
|
||
disparity_msg.baseline_in_mm = baseline_mm
|
||
|
||
self._mqtt_client.publish(topic=self._disparity_topic,
|
||
payload=disparity_msg.SerializeToString(),
|
||
qos=0,
|
||
retain=False)
|
||
|
||
|
||
class Source(abc.ABC):
|
||
"""Base class for image source"""
|
||
|
||
@abc.abstractmethod
|
||
def get_stream_name(self) -> str:
|
||
"""
|
||
Queue/stream name to use to get data
|
||
|
||
:return: steam name
|
||
"""
|
||
|
||
@abc.abstractmethod
|
||
def link(self, input_node: dai.Node.Input) -> None:
|
||
"""
|
||
Link this source to the input node
|
||
|
||
:param: input_node: input node to link
|
||
"""
|
||
|
||
|
||
class ObjectDetectionNN:
|
||
"""
|
||
Node to detect objects into image
|
||
|
||
Read image as input and apply resize transformation before to run NN on it
|
||
Result is available with 'get_stream_name()' stream
|
||
"""
|
||
|
||
def __init__(self, pipeline: dai.Pipeline):
|
||
# Define a neural network that will make predictions based on the source frames
|
||
detection_nn = pipeline.createNeuralNetwork()
|
||
detection_nn.setBlobPath(pathlib.Path(_NN_PATH))
|
||
detection_nn.setNumPoolFrames(4)
|
||
detection_nn.input.setBlocking(False)
|
||
detection_nn.setNumInferenceThreads(2)
|
||
self._detection_nn = detection_nn
|
||
self._xout = self._configure_xout_nn(pipeline)
|
||
self._detection_nn.out.link(self._xout.input)
|
||
self._manip_image = self._configure_manip(pipeline)
|
||
self._manip_image.out.link(self._detection_nn.input)
|
||
|
||
@staticmethod
|
||
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
|
||
# Resize image
|
||
manip = pipeline.createImageManip()
|
||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||
manip.initialConfig.setKeepAspectRatio(False)
|
||
return manip
|
||
|
||
@staticmethod
|
||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||
xout_nn = pipeline.createXLinkOut()
|
||
xout_nn.setStreamName("nn")
|
||
xout_nn.input.setBlocking(False)
|
||
return xout_nn
|
||
|
||
def get_stream_name(self) -> str:
|
||
"""
|
||
Queue/stream name to use to get data
|
||
|
||
:return: stream name
|
||
"""
|
||
return self._xout.getStreamName()
|
||
|
||
def get_input(self) -> dai.Node.Input:
|
||
"""
|
||
Get input node to use to link with source node
|
||
:return: input to link with source output, see Source.link()
|
||
"""
|
||
return self._manip_image.inputImage
|
||
|
||
|
||
class CameraSource(Source):
|
||
"""Image source based on camera preview"""
|
||
|
||
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int, fps: int):
|
||
self._cam_rgb = pipeline.createColorCamera()
|
||
self._xout_rgb = pipeline.createXLinkOut()
|
||
self._xout_rgb.setStreamName("rgb")
|
||
|
||
# Properties
|
||
self._cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||
self._cam_rgb.setPreviewSize(width=_PREVIEW_WIDTH, height=_PREVIEW_HEIGHT)
|
||
self._cam_rgb.setInterleaved(False)
|
||
self._cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||
self._cam_rgb.setFps(fps)
|
||
self._resize_manip = self._configure_manip(pipeline=pipeline, img_width=img_width, img_height=img_height)
|
||
|
||
# link camera preview to output
|
||
self._cam_rgb.preview.link(self._resize_manip.inputImage)
|
||
self._resize_manip.out.link(self._xout_rgb.input)
|
||
|
||
def link(self, input_node: dai.Node.Input) -> None:
|
||
self._cam_rgb.preview.link(input_node)
|
||
|
||
def get_stream_name(self) -> str:
|
||
return self._xout_rgb.getStreamName()
|
||
|
||
@staticmethod
|
||
def _configure_manip(pipeline: dai.Pipeline, img_width: int, img_height: int) -> dai.node.ImageManip:
|
||
# Resize image
|
||
manip = pipeline.createImageManip()
|
||
manip.initialConfig.setResize(img_width, img_height)
|
||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||
manip.initialConfig.setKeepAspectRatio(False)
|
||
return manip
|
||
|
||
|
||
class StereoDepthPostFilter(abc.ABC):
|
||
@abc.abstractmethod
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
pass
|
||
|
||
|
||
class MedianFilter(StereoDepthPostFilter):
|
||
"""
|
||
This is a non-edge preserving Median filter, which can be used to reduce noise and smoothen the depth map.
|
||
Median filter is implemented in hardware, so it’s the fastest filter.
|
||
"""
|
||
def __init__(self, value: dai.MedianFilter = dai.MedianFilter.KERNEL_7x7) -> None:
|
||
self._value = value
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.median.value = self._value
|
||
|
||
|
||
class SpeckleFilter(StereoDepthPostFilter):
|
||
"""
|
||
Speckle Filter is used to reduce the speckle noise. Speckle noise is a region with huge variance between
|
||
neighboring disparity/depth pixels, and speckle filter tries to filter this region.
|
||
"""
|
||
def __init__(self, enable: bool = True, speckle_range: int = 50) -> None:
|
||
"""
|
||
:param enable: Whether to enable or disable the filter.
|
||
:param speckle_range: Speckle search range.
|
||
"""
|
||
self._enable = enable
|
||
self._speckle_range = speckle_range
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.speckleFilter.enable = self._enable
|
||
config.postProcessing.speckleFilter.speckleRange = self._speckle_range
|
||
|
||
|
||
class TemporalFilter(StereoDepthPostFilter):
|
||
"""
|
||
Temporal Filter is intended to improve the depth data persistency by manipulating per-pixel values based on
|
||
previous frames. The filter performs a single pass on the data, adjusting the depth values while also updating the
|
||
tracking history. In cases where the pixel data is missing or invalid, the filter uses a user-defined persistency
|
||
mode to decide whether the missing value should be rectified with stored data. Note that due to its reliance on
|
||
historic data the filter may introduce visible blurring/smearing artifacts, and therefore is best-suited for
|
||
static scenes.
|
||
"""
|
||
def __init__(self,
|
||
enable: bool = True,
|
||
persistencyMode: dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode=dai.RawStereoDepthConfig.PostProcessing.TemporalFilter.PersistencyMode.VALID_2_IN_LAST_4,
|
||
alpha: float = 0.4,
|
||
delta: int = 0):
|
||
"""
|
||
:param enable: Whether to enable or disable the filter.
|
||
:param persistencyMode: Persistency mode. If the current disparity/depth value is invalid, it will be replaced
|
||
by an older value, based on persistency mode.
|
||
:param alpha: The Alpha factor in an exponential moving average with Alpha=1 - no filter.
|
||
Alpha = 0 - infinite filter. Determines the extent of the temporal history that should be averaged.
|
||
:param delta: Step-size boundary. Establishes the threshold used to preserve surfaces (edges).
|
||
If the disparity value between neighboring pixels exceed the disparity threshold set by this delta parameter,
|
||
then filtering will be temporarily disabled. Default value 0 means auto: 3 disparity integer levels.
|
||
In case of subpixel mode it’s 3*number of subpixel levels.
|
||
"""
|
||
self._enable = enable
|
||
self._persistencyMode = persistencyMode
|
||
self._alpha = alpha
|
||
self._delta = delta
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.temporalFilter.enable = self._enable
|
||
config.postProcessing.temporalFilter.persistencyMode = self._persistencyMode
|
||
config.postProcessing.temporalFilter.alpha = self._alpha
|
||
config.postProcessing.temporalFilter.delta = self._delta
|
||
|
||
|
||
class SpatialFilter(StereoDepthPostFilter):
|
||
"""
|
||
Spatial Edge-Preserving Filter will fill invalid depth pixels with valid neighboring depth pixels. It performs a
|
||
series of 1D horizontal and vertical passes or iterations, to enhance the smoothness of the reconstructed data.
|
||
"""
|
||
def __init__(self,
|
||
enable: bool = True,
|
||
hole_filling_radius: int = 2,
|
||
alpha: float = 0.5,
|
||
delta: int = 0,
|
||
num_iterations: int = 1):
|
||
"""
|
||
:param enable: Whether to enable or disable the filter.
|
||
:param hole_filling_radius: An in-place heuristic symmetric hole-filling mode applied horizontally during
|
||
the filter passes. Intended to rectify minor artefacts with minimal performance impact. Search radius for
|
||
hole filling.
|
||
:param alpha: The Alpha factor in an exponential moving average with Alpha=1 - no filter.
|
||
Alpha = 0 - infinite filter. Determines the amount of smoothing.
|
||
:param delta: Step-size boundary. Establishes the threshold used to preserve “edges”. If the disparity value
|
||
between neighboring pixels exceed the disparity threshold set by this delta parameter, then filtering will be
|
||
temporarily disabled. Default value 0 means auto: 3 disparity integer levels. In case of subpixel mode it’s
|
||
3*number of subpixel levels.
|
||
:param num_iterations: Number of iterations over the image in both horizontal and vertical direction.
|
||
"""
|
||
self._enable = enable
|
||
self._hole_filling_radius = hole_filling_radius
|
||
self._alpha = alpha
|
||
self._delta = delta
|
||
self._num_iterations = num_iterations
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.spatialFilter.enable = self._enable
|
||
config.postProcessing.spatialFilter.holeFillingRadius = self._hole_filling_radius
|
||
config.postProcessing.spatialFilter.alpha = self._alpha
|
||
config.postProcessing.spatialFilter.delta = self._delta
|
||
config.postProcessing.spatialFilter.numIterations = self._num_iterations
|
||
|
||
|
||
class ThresholdFilter(StereoDepthPostFilter):
|
||
"""
|
||
Threshold Filter filters out all disparity/depth pixels outside the configured min/max threshold values.
|
||
"""
|
||
def __init__(self, min_range: int = 400, max_range: int = 15000):
|
||
"""
|
||
:param min_range: Minimum range in depth units. Depth values under this value are invalidated.
|
||
:param max_range: Maximum range in depth units. Depth values over this value are invalidated.
|
||
"""
|
||
self._min_range = min_range
|
||
self._max_range = max_range
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.thresholdFilter.minRange = self._min_range
|
||
config.postProcessing.thresholdFilter.maxRange = self._max_range
|
||
|
||
|
||
class DecimationFilter(StereoDepthPostFilter):
|
||
"""
|
||
Decimation Filter will sub-samples the depth map, which means it reduces the depth scene complexity and allows
|
||
other filters to run faster. Setting decimationFactor to 2 will downscale 1280x800 depth map to 640x400.
|
||
"""
|
||
def __init__(self,
|
||
decimation_factor: int = 1,
|
||
decimation_mode: dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode = dai.RawStereoDepthConfig.PostProcessing.DecimationFilter.DecimationMode.PIXEL_SKIPPING
|
||
):
|
||
"""
|
||
:param decimation_factor: Decimation factor. Valid values are 1,2,3,4. Disparity/depth map x/y resolution will
|
||
be decimated with this value.
|
||
:param decimation_mode: Decimation algorithm type.
|
||
"""
|
||
self._decimation_factor = decimation_factor
|
||
self._mode = decimation_mode
|
||
|
||
def apply(self, config: dai.RawStereoDepthConfig) -> None:
|
||
config.postProcessing.decimationFilter.decimationFactor = self._decimation_factor
|
||
config.postProcessing.decimationFilter.decimationMode = self._mode
|
||
|
||
|
||
class DepthSource(Source):
|
||
def __init__(self, pipeline: dai.Pipeline,
|
||
extended_disparity: bool = False,
|
||
subpixel: bool = False,
|
||
lr_check: bool = True,
|
||
*filters: StereoDepthPostFilter
|
||
) -> None:
|
||
"""
|
||
# Closer-in minimum depth, disparity range is doubled (from 95 to 190):
|
||
extended_disparity = False
|
||
# Better accuracy for longer distance, fractional disparity 32-levels:
|
||
subpixel = False
|
||
# Better handling for occlusions:
|
||
lr_check = True
|
||
"""
|
||
self._monoLeft = pipeline.create(dai.node.MonoCamera)
|
||
self._monoRight = pipeline.create(dai.node.MonoCamera)
|
||
self._depth = pipeline.create(dai.node.StereoDepth)
|
||
self._xout_disparity = pipeline.create(dai.node.XLinkOut)
|
||
|
||
self._xout_disparity.setStreamName("disparity")
|
||
|
||
# Properties
|
||
self._monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
|
||
self._monoLeft.setCamera("left")
|
||
self._monoLeft.out.link(self._depth.left)
|
||
self._monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
|
||
self._monoRight.setCamera("right")
|
||
self._monoRight.out.link(self._depth.right)
|
||
|
||
# Create a node that will produce the depth map
|
||
# (using disparity output as it's easier to visualize depth this way)
|
||
self._depth.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
|
||
# Options: MEDIAN_OFF, KERNEL_3x3, KERNEL_5x5, KERNEL_7x7 (default)
|
||
self._depth.initialConfig.setMedianFilter(dai.MedianFilter.KERNEL_7x7)
|
||
self._depth.setLeftRightCheck(lr_check)
|
||
self._depth.setExtendedDisparity(extended_disparity)
|
||
self._depth.setSubpixel(subpixel)
|
||
self._depth.disparity.link(self._xout_disparity.input)
|
||
|
||
if len(filters) > 0:
|
||
# Configure post-processing filters
|
||
config = self._depth.initialConfig.get()
|
||
for filter in filters:
|
||
filter.apply(config)
|
||
self._depth.initialConfig.set(config)
|
||
|
||
def get_stream_name(self) -> str:
|
||
return self._xout_disparity.getStreamName()
|
||
|
||
def link(self, input_node: dai.Node.Input) -> None:
|
||
self._depth.disparity.link(input_node)
|
||
|
||
|
||
@dataclass
|
||
class MqttConfig:
|
||
"""MQTT configuration"""
|
||
host: str
|
||
topic: str
|
||
port: int = 1883
|
||
qos: int = 0
|
||
|
||
|
||
class MqttSource(Source):
|
||
"""Image source based onto mqtt stream"""
|
||
|
||
def __init__(self, device: Device, pipeline: dai.Pipeline, mqtt_config: MqttConfig):
|
||
self._mqtt_config = mqtt_config
|
||
self._client = mqtt.Client()
|
||
self._client.user_data_set(mqtt_config)
|
||
self._client.on_connect = self._on_connect
|
||
self._client.on_message = self._on_message
|
||
|
||
self._img_in = pipeline.createXLinkIn()
|
||
self._img_in.setStreamName("img_input")
|
||
self._img_out = pipeline.createXLinkOut()
|
||
self._img_out.setStreamName("img_output")
|
||
self._img_in.out.link(self._img_out.input)
|
||
|
||
self._img_in_queue = device.getInputQueue(self._img_in.getStreamName())
|
||
|
||
def run(self) -> None:
|
||
""" Connect and start mqtt loop """
|
||
self._client.connect(host=self._mqtt_config.host, port=self._mqtt_config.port)
|
||
self._client.loop_start()
|
||
|
||
def stop(self) -> None:
|
||
"""Stop and disconnect mqtt loop"""
|
||
self._client.loop_stop()
|
||
self._client.disconnect()
|
||
|
||
@staticmethod
|
||
# pylint: disable=unused-argument
|
||
def _on_connect(client: mqtt.Client, userdata: MqttConfig, flags: typing.Any,
|
||
result_connection: typing.Any) -> None:
|
||
# if we lose the connection and reconnect then subscriptions will be renewed.
|
||
client.subscribe(topic=userdata.topic, qos=userdata.qos)
|
||
|
||
# pylint: disable=unused-argument
|
||
def _on_message(self, _: mqtt.Client, user_data: MqttConfig, msg: mqtt.MQTTMessage) -> None:
|
||
frame_msg = evt.FrameMessage()
|
||
frame_msg.ParseFromString(msg.payload)
|
||
|
||
frame = np.asarray(frame_msg.frame, dtype="uint8")
|
||
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
|
||
nn_data = dai.NNData()
|
||
nn_data.setLayer("data", _to_planar(frame, (300, 300)))
|
||
self._img_in_queue.send(nn_data)
|
||
|
||
def get_stream_name(self) -> str:
|
||
return self._img_out.getStreamName()
|
||
|
||
def link(self, input_node: dai.Node.Input) -> None:
|
||
self._img_in.out.link(input_node)
|
||
|
||
|
||
def _to_planar(arr: npt.NDArray[np.uint8], shape: tuple[int, int]) -> list[int]:
|
||
return [val for channel in cv2.resize(arr, shape).transpose(2, 0, 1) for y_col in channel for val in y_col]
|
||
|
||
|
||
class PipelineController:
|
||
"""
|
||
Pipeline controller that drive camera device
|
||
"""
|
||
|
||
def __init__(self, frame_processor: FrameProcessor,
|
||
object_processor: ObjectProcessor, disparity_processor: DisparityProcessor,
|
||
camera: Source, depth_source: Source, object_node: ObjectDetectionNN,
|
||
pipeline: dai.Pipeline):
|
||
self._frame_processor = frame_processor
|
||
self._object_processor = object_processor
|
||
self._disparity_processor = disparity_processor
|
||
self._camera = camera
|
||
self._depth_source = depth_source
|
||
self._object_node = object_node
|
||
self._stop = False
|
||
self._pipeline = pipeline
|
||
self._configure_pipeline()
|
||
self._focal_length_in_pixels: float | None = None
|
||
|
||
def _configure_pipeline(self) -> None:
|
||
logger.info("configure pipeline")
|
||
|
||
self._pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
||
|
||
# Link preview to manip and manip to nn
|
||
self._camera.link(self._object_node.get_input())
|
||
|
||
logger.info("pipeline configured")
|
||
|
||
def run(self) -> None:
|
||
"""
|
||
Start event loop
|
||
:return:
|
||
"""
|
||
# Connect to device and start pipeline
|
||
with Device(pipeline=self._pipeline) as dev:
|
||
logger.info('MxId: %s', dev.getDeviceInfo().getMxId())
|
||
logger.info('USB speed: %s', dev.getUsbSpeed())
|
||
logger.info('Connected cameras: %s', str(dev.getConnectedCameras()))
|
||
logger.info("output queues found: %s", str(''.join(dev.getOutputQueueNames()))) # type: ignore
|
||
|
||
calib_data = dev.readCalibration()
|
||
intrinsics = calib_data.getCameraIntrinsics(dai.CameraBoardSocket.CAM_C)
|
||
self._focal_length_in_pixels = intrinsics[0][0]
|
||
logger.info('Right mono camera focal length in pixels: %s', self._focal_length_in_pixels)
|
||
|
||
dev.startPipeline()
|
||
# Queues
|
||
queue_size = 4
|
||
q_rgb = dev.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, # type: ignore
|
||
blocking=False)
|
||
q_nn = dev.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, # type: ignore
|
||
blocking=False)
|
||
q_disparity = dev.getOutputQueue(name=self._depth_source.get_stream_name(), maxSize=queue_size, # type: ignore
|
||
blocking=False)
|
||
|
||
start_time = time.time()
|
||
counter = 0
|
||
fps = 0
|
||
display_time = time.time()
|
||
self._stop = False
|
||
while True:
|
||
if self._stop:
|
||
logger.info("stop loop event")
|
||
return
|
||
try:
|
||
self._loop_on_camera_events(q_nn, q_rgb, q_disparity)
|
||
# pylint: disable=broad-except # bad frame or event must not stop loop
|
||
except Exception as ex:
|
||
logger.exception("unexpected error: %s", str(ex))
|
||
|
||
counter += 1
|
||
if (time.time() - start_time) > 1:
|
||
fps = counter / (time.time() - start_time)
|
||
counter = 0
|
||
start_time = time.time()
|
||
if (time.time() - display_time) >= 10:
|
||
display_time = time.time()
|
||
logger.info("fps: %s", fps)
|
||
|
||
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue, q_disparity: dai.DataOutputQueue) -> None:
|
||
logger.debug("wait for new frame")
|
||
|
||
# Wait for frame
|
||
in_rgb: dai.ImgFrame = q_rgb.get() # type: ignore # blocking call, will wait until a new data has arrived
|
||
try:
|
||
logger.debug("process frame")
|
||
frame_ref = self._frame_processor.process(in_rgb)
|
||
except FrameProcessError as ex:
|
||
logger.error("unable to process frame: %s", str(ex))
|
||
return
|
||
logger.debug("frame processed")
|
||
|
||
logger.debug("wait for nn response")
|
||
# Read NN result
|
||
in_nn: dai.NNData = q_nn.get() # type: ignore
|
||
logger.debug("process objects")
|
||
self._object_processor.process(in_nn, frame_ref)
|
||
logger.debug("objects processed")
|
||
|
||
logger.debug("process disparity")
|
||
in_disparity: dai.ImgFrame = q_disparity.get() # type: ignore
|
||
self._disparity_processor.process(in_disparity, frame_ref=frame_ref,
|
||
focal_length_in_pixels=self._focal_length_in_pixels)
|
||
logger.debug("disparity processed")
|
||
|
||
def stop(self) -> None:
|
||
"""
|
||
Stop event loop, if loop is not running, do nothing
|
||
:return:
|
||
"""
|
||
self._stop = True
|
||
|
||
|
||
def _bbox_to_object(bbox: npt.NDArray[np.float64], score: float) -> evt.Object:
|
||
obj = evt.Object()
|
||
obj.type = evt.TypeObject.ANY
|
||
obj.top = bbox[0].astype(float)
|
||
obj.right = bbox[3].astype(float)
|
||
obj.bottom = bbox[2].astype(float)
|
||
obj.left = bbox[1].astype(float)
|
||
obj.confidence = score
|
||
return obj
|