226 lines
8.1 KiB
Python
226 lines
8.1 KiB
Python
"""
|
|
Camera event loop
|
|
"""
|
|
import datetime
|
|
import logging
|
|
import typing
|
|
|
|
import cv2
|
|
import depthai as dai
|
|
import numpy as np
|
|
import paho.mqtt.client as mqtt
|
|
|
|
import events.events_pb2
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
|
|
_NN_WIDTH = 192
|
|
_NN_HEIGHT = 192
|
|
|
|
|
|
class ObjectProcessor:
|
|
"""
|
|
Processor for Object detection
|
|
"""
|
|
|
|
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
|
|
self._mqtt_client = mqtt_client
|
|
self._objects_topic = objects_topic
|
|
self._objects_threshold = objects_threshold
|
|
|
|
def process(self, in_nn: dai.NNData, frame_ref, frame_date: datetime.datetime) -> None:
|
|
"""
|
|
Parse and publish result of NeuralNetwork result
|
|
:param in_nn: NeuralNetwork result read from device
|
|
:param frame_ref: Id of the frame where objects are been detected
|
|
:param frame_date: Datetime of the frame used for detection
|
|
:return:
|
|
"""
|
|
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
|
|
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
|
|
# keep boxes bigger than threshold
|
|
mask = detection_scores >= self._objects_threshold
|
|
boxes = detection_boxes[mask]
|
|
scores = detection_scores[mask]
|
|
|
|
if boxes.shape[0] > 0:
|
|
self._publish_objects(boxes, frame_ref, frame_date, scores)
|
|
|
|
def _publish_objects(self, boxes: np.array, frame_ref, now: datetime.datetime, scores: np.array) -> None:
|
|
objects_msg = events.events_pb2.ObjectsMessage()
|
|
objs = []
|
|
for i in range(boxes.shape[0]):
|
|
logger.debug("new object detected: %s", str(boxes[i]))
|
|
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
|
|
objects_msg.objects.extend(objs)
|
|
objects_msg.frame_ref.name = frame_ref.name
|
|
objects_msg.frame_ref.id = frame_ref.id
|
|
objects_msg.frame_ref.created_at.FromDatetime(now)
|
|
logger.debug("publish object event to %s", self._objects_topic)
|
|
self._mqtt_client.publish(topic=self._objects_topic,
|
|
payload=objects_msg.SerializeToString(),
|
|
qos=0,
|
|
retain=False)
|
|
|
|
|
|
class FrameProcessor:
|
|
"""
|
|
Processor for camera frames
|
|
"""
|
|
|
|
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
|
|
self._mqtt_client = mqtt_client
|
|
self._frame_topic = frame_topic
|
|
|
|
def process(self, img: dai.ImgFrame) -> (typing.Any, datetime.datetime):
|
|
"""
|
|
Publish camera frames
|
|
:param img:
|
|
:return:
|
|
id frame
|
|
frame creation datetime
|
|
"""
|
|
im_resize = img.getCvFrame()
|
|
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
|
|
byte_im = im_buf_arr.tobytes()
|
|
|
|
now = datetime.datetime.now()
|
|
frame_msg = events.events_pb2.FrameMessage()
|
|
frame_msg.id.name = "robocar-oak-camera-oak"
|
|
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
|
frame_msg.id.created_at.FromDatetime(now)
|
|
frame_msg.frame = byte_im
|
|
logger.debug("publish frame event to %s", self._frame_topic)
|
|
self._mqtt_client.publish(topic=self._frame_topic,
|
|
payload=frame_msg.SerializeToString(),
|
|
qos=0,
|
|
retain=False)
|
|
return frame_msg.id, now
|
|
|
|
|
|
class PipelineController:
|
|
"""
|
|
Pipeline controller that drive camera device
|
|
"""
|
|
|
|
def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor,
|
|
object_processor: ObjectProcessor):
|
|
self._img_width = img_width
|
|
self._img_height = img_height
|
|
self._pipeline = self._configure_pipeline()
|
|
self._frame_processor = frame_processor
|
|
self._object_processor = object_processor
|
|
self._stop = False
|
|
|
|
def _configure_pipeline(self) -> dai.Pipeline:
|
|
logger.info("configure pipeline")
|
|
pipeline = dai.Pipeline()
|
|
|
|
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
|
|
|
detection_nn = self._configure_detection_nn(pipeline)
|
|
xout_nn = self._configure_xout_nn(pipeline)
|
|
|
|
# Resize image
|
|
manip = pipeline.create(dai.node.ImageManip)
|
|
manip.initialConfig.setResize(NN_WIDTH, NN_HEIGHT)
|
|
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
|
manip.initialConfig.setKeepAspectRatio(False)
|
|
|
|
cam_rgb = pipeline.create(dai.node.ColorCamera)
|
|
xout_rgb = pipeline.create(dai.node.XLinkOut)
|
|
xout_rgb.setStreamName("rgb")
|
|
|
|
# Properties
|
|
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
|
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
|
|
cam_rgb.setInterleaved(False)
|
|
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
|
cam_rgb.setFps(30)
|
|
|
|
# Link preview to manip and manip to nn
|
|
cam_rgb.preview.link(manip.inputImage)
|
|
manip.out.link(detection_nn.input)
|
|
|
|
# Linking to output
|
|
cam_rgb.preview.link(xout_rgb.input)
|
|
detection_nn.out.link(xout_nn.input)
|
|
|
|
logger.info("pipeline configured")
|
|
return pipeline
|
|
|
|
@staticmethod
|
|
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
|
xout_nn = pipeline.create(dai.node.XLinkOut)
|
|
xout_nn.setStreamName("nn")
|
|
xout_nn.input.setBlocking(False)
|
|
return xout_nn
|
|
|
|
@staticmethod
|
|
def _configure_detection_nn(pipeline: dai.Pipeline) -> dai.node.NeuralNetwork:
|
|
# Define a neural network that will make predictions based on the source frames
|
|
detection_nn = pipeline.create(dai.node.NeuralNetwork)
|
|
detection_nn.setBlobPath(NN_PATH)
|
|
detection_nn.setNumPoolFrames(4)
|
|
detection_nn.input.setBlocking(False)
|
|
detection_nn.setNumInferenceThreads(2)
|
|
return detection_nn
|
|
|
|
def run(self) -> None:
|
|
"""
|
|
Start event loop
|
|
:return:
|
|
"""
|
|
# Connect to device and start pipeline
|
|
with dai.Device(self._pipeline) as device:
|
|
logger.info('MxId: %s', device.getDeviceInfo().getMxId())
|
|
logger.info('USB speed: %s', device.getUsbSpeed())
|
|
logger.info('Connected cameras: %s', device.getConnectedCameras())
|
|
logger.info("output queues found: %s", device.getOutputQueueNames())
|
|
|
|
device.startPipeline()
|
|
# Queues
|
|
queue_size = 4
|
|
q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False)
|
|
q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False)
|
|
|
|
self._stop = False
|
|
while True:
|
|
if self._stop:
|
|
logger.info("stop loop event")
|
|
return
|
|
try:
|
|
self._loop_on_camera_events(q_nn, q_rgb)
|
|
# pylint: disable=broad-except # bad frame or event must not stop loop
|
|
except Exception as ex:
|
|
logger.exception("unexpected error: %s", str(ex))
|
|
|
|
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue):
|
|
logger.debug("wait for new frame")
|
|
|
|
# Wait for frame
|
|
in_rgb: dai.ImgFrame = q_rgb.get() # blocking call, will wait until a new data has arrived
|
|
frame_msg, now = self._frame_processor.process(in_rgb)
|
|
|
|
# Read NN result
|
|
in_nn: dai.NNData = q_nn.get()
|
|
self._object_processor.process(in_nn, frame_msg.id, now)
|
|
|
|
def stop(self):
|
|
"""
|
|
Stop event loop, if loop is not running, do nothing
|
|
:return:
|
|
"""
|
|
self._stop = True
|
|
|
|
def _bbox_to_object(bbox: np.array, score: float) -> events.events_pb2.Object:
|
|
obj = events.events_pb2.Object()
|
|
obj.type = events.events_pb2.TypeObject.ANY
|
|
obj.top = bbox[0].astype(float)
|
|
obj.right = bbox[3].astype(float)
|
|
obj.bottom = bbox[2].astype(float)
|
|
obj.left = bbox[1].astype(float)
|
|
obj.confidence = score
|
|
return obj
|