feat: implement linear model and autodetect parameters
This commit is contained in:
@ -19,9 +19,10 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
func NewPart(client mqtt.Client, modelPath, steeringTopic, cameraTopic string, edgeVerbosity int, imgWidth, imgHeight, horizon int) *Part {
|
||||
func NewPart(client mqtt.Client, modelType tools.ModelType, modelPath, steeringTopic, cameraTopic string, edgeVerbosity int, imgWidth, imgHeight, horizon int) *Part {
|
||||
return &Part{
|
||||
client: client,
|
||||
modelType: modelType,
|
||||
modelPath: modelPath,
|
||||
steeringTopic: steeringTopic,
|
||||
cameraTopic: cameraTopic,
|
||||
@ -42,6 +43,7 @@ type Part struct {
|
||||
|
||||
options *tflite.InterpreterOptions
|
||||
interpreter *tflite.Interpreter
|
||||
modelType tools.ModelType
|
||||
modelPath string
|
||||
model *tflite.Model
|
||||
edgeVebosity int
|
||||
@ -214,7 +216,14 @@ func (p *Part) Value(img image.Image) (float32, float32, error) {
|
||||
output := p.interpreter.GetOutputTensor(0).UInt8s()
|
||||
zap.L().Debug("raw steering", zap.Uint8s("result", output))
|
||||
|
||||
steering, score := tools.LinearBin(output, 15, -1, 2.0)
|
||||
var steering, score float64
|
||||
switch p.modelType {
|
||||
case tools.ModelTypeCategorical:
|
||||
steering, score = tools.LinearBin(output, 15, -1, 2.0)
|
||||
case tools.ModelTypeLinear:
|
||||
steering = 2*(float64(output[0])/255.) - 1.
|
||||
score = 0.6
|
||||
}
|
||||
zap.L().Debug("found steering",
|
||||
zap.Float64("steering", steering),
|
||||
zap.Float64("score", score),
|
||||
|
Reference in New Issue
Block a user