feat(telemetry): instrument inference duration and frame age

This commit is contained in:
2021-12-02 09:16:50 +01:00
parent 85fe69dcaa
commit bb99d3b7c9
450 changed files with 201257 additions and 2 deletions

201
vendor/go.opentelemetry.io/otel/metric/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

124
vendor/go.opentelemetry.io/otel/metric/config.go generated vendored Normal file
View File

@@ -0,0 +1,124 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric // import "go.opentelemetry.io/otel/metric"
import (
"go.opentelemetry.io/otel/metric/unit"
)
// InstrumentConfig contains options for metric instrument descriptors.
type InstrumentConfig struct {
description string
unit unit.Unit
}
// Description describes the instrument in human-readable terms.
func (cfg InstrumentConfig) Description() string {
return cfg.description
}
// Unit describes the measurement unit for a instrument.
func (cfg InstrumentConfig) Unit() unit.Unit {
return cfg.unit
}
// InstrumentOption is an interface for applying metric instrument options.
type InstrumentOption interface {
// ApplyMeter is used to set a InstrumentOption value of a
// InstrumentConfig.
applyInstrument(*InstrumentConfig)
}
// NewInstrumentConfig creates a new InstrumentConfig
// and applies all the given options.
func NewInstrumentConfig(opts ...InstrumentOption) InstrumentConfig {
var config InstrumentConfig
for _, o := range opts {
o.applyInstrument(&config)
}
return config
}
type instrumentOptionFunc func(*InstrumentConfig)
func (fn instrumentOptionFunc) applyInstrument(cfg *InstrumentConfig) {
fn(cfg)
}
// WithDescription applies provided description.
func WithDescription(desc string) InstrumentOption {
return instrumentOptionFunc(func(cfg *InstrumentConfig) {
cfg.description = desc
})
}
// WithUnit applies provided unit.
func WithUnit(unit unit.Unit) InstrumentOption {
return instrumentOptionFunc(func(cfg *InstrumentConfig) {
cfg.unit = unit
})
}
// MeterConfig contains options for Meters.
type MeterConfig struct {
instrumentationVersion string
schemaURL string
}
// InstrumentationVersion is the version of the library providing instrumentation.
func (cfg MeterConfig) InstrumentationVersion() string {
return cfg.instrumentationVersion
}
// SchemaURL is the schema_url of the library providing instrumentation.
func (cfg MeterConfig) SchemaURL() string {
return cfg.schemaURL
}
// MeterOption is an interface for applying Meter options.
type MeterOption interface {
// ApplyMeter is used to set a MeterOption value of a MeterConfig.
applyMeter(*MeterConfig)
}
// NewMeterConfig creates a new MeterConfig and applies
// all the given options.
func NewMeterConfig(opts ...MeterOption) MeterConfig {
var config MeterConfig
for _, o := range opts {
o.applyMeter(&config)
}
return config
}
type meterOptionFunc func(*MeterConfig)
func (fn meterOptionFunc) applyMeter(cfg *MeterConfig) {
fn(cfg)
}
// WithInstrumentationVersion sets the instrumentation version.
func WithInstrumentationVersion(version string) MeterOption {
return meterOptionFunc(func(config *MeterConfig) {
config.instrumentationVersion = version
})
}
// WithSchemaURL sets the schema URL.
func WithSchemaURL(schemaURL string) MeterOption {
return meterOptionFunc(func(config *MeterConfig) {
config.schemaURL = schemaURL
})
}

67
vendor/go.opentelemetry.io/otel/metric/doc.go generated vendored Normal file
View File

@@ -0,0 +1,67 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package metric provides an implementation of the metrics part of the
OpenTelemetry API.
This package is currently in a pre-GA phase. Backwards incompatible changes
may be introduced in subsequent minor version releases as we work to track the
evolving OpenTelemetry specification and user feedback.
Measurements can be made about an operation being performed or the state of a
system in general. These measurements can be crucial to the reliable operation
of code and provide valuable insights about the inner workings of a system.
Measurements are made using instruments provided by this package. The type of
instrument used will depend on the type of measurement being made and of what
part of a system is being measured.
Instruments are categorized as Synchronous or Asynchronous and independently
as Adding or Grouping. Synchronous instruments are called by the user with a
Context. Asynchronous instruments are called by the SDK during collection.
Adding instruments are semantically intended for capturing a sum. Grouping
instruments are intended for capturing a distribution.
Adding instruments may be monotonic, in which case they are non-decreasing
and naturally define a rate.
The synchronous instrument names are:
Counter: adding, monotonic
UpDownCounter: adding
Histogram: grouping
and the asynchronous instruments are:
CounterObserver: adding, monotonic
UpDownCounterObserver: adding
GaugeObserver: grouping
All instruments are provided with support for either float64 or int64 input
values.
An instrument is created using a Meter. Additionally, a Meter is used to
record batches of synchronous measurements or asynchronous observations. A
Meter is obtained using a MeterProvider. A Meter, like a Tracer, is unique to
the instrumentation it instruments and must be named and versioned when
created with a MeterProvider with the name and version of the instrumentation
library.
Instrumentation should be designed to accept a MeterProvider from which it can
create its own unique Meter. Alternatively, the registered global
MeterProvider from the go.opentelemetry.io/otel package can be used as a
default.
*/
package metric // import "go.opentelemetry.io/otel/metric"

View File

@@ -0,0 +1,49 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package global // import "go.opentelemetry.io/otel/metric/global"
import (
"go.opentelemetry.io/otel/internal/metric/global"
"go.opentelemetry.io/otel/metric"
)
// Meter creates an implementation of the Meter interface from the global
// MeterProvider. The instrumentationName must be the name of the library
// providing instrumentation. This name may be the same as the instrumented
// code only if that code provides built-in instrumentation. If the
// instrumentationName is empty, then a implementation defined default name
// will be used instead.
//
// This is short for MeterProvider().Meter(name)
func Meter(instrumentationName string, opts ...metric.MeterOption) metric.Meter {
return GetMeterProvider().Meter(instrumentationName, opts...)
}
// GetMeterProvider returns the registered global meter provider. If
// none is registered then a default meter provider is returned that
// forwards the Meter interface to the first registered Meter.
//
// Use the meter provider to create a named meter. E.g.
// meter := global.MeterProvider().Meter("example.com/foo")
// or
// meter := global.Meter("example.com/foo")
func GetMeterProvider() metric.MeterProvider {
return global.MeterProvider()
}
// SetMeterProvider registers `mp` as the global meter provider.
func SetMeterProvider(mp metric.MeterProvider) {
global.SetMeterProvider(mp)
}

538
vendor/go.opentelemetry.io/otel/metric/metric.go generated vendored Normal file
View File

@@ -0,0 +1,538 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric // import "go.opentelemetry.io/otel/metric"
import (
"context"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/metric/number"
"go.opentelemetry.io/otel/metric/sdkapi"
)
// MeterProvider supports named Meter instances.
type MeterProvider interface {
// Meter creates an implementation of the Meter interface.
// The instrumentationName must be the name of the library providing
// instrumentation. This name may be the same as the instrumented code
// only if that code provides built-in instrumentation. If the
// instrumentationName is empty, then a implementation defined default
// name will be used instead.
Meter(instrumentationName string, opts ...MeterOption) Meter
}
// Meter is the creator of metric instruments.
//
// An uninitialized Meter is a no-op implementation.
type Meter struct {
impl sdkapi.MeterImpl
}
// WrapMeterImpl constructs a `Meter` implementation from a
// `MeterImpl` implementation.
func WrapMeterImpl(impl sdkapi.MeterImpl) Meter {
return Meter{
impl: impl,
}
}
// Measurement is used for reporting a synchronous batch of metric
// values. Instances of this type should be created by synchronous
// instruments (e.g., Int64Counter.Measurement()).
//
// Note: This is an alias because it is a first-class member of the
// API but is also part of the lower-level sdkapi interface.
type Measurement = sdkapi.Measurement
// Observation is used for reporting an asynchronous batch of metric
// values. Instances of this type should be created by asynchronous
// instruments (e.g., Int64GaugeObserver.Observation()).
//
// Note: This is an alias because it is a first-class member of the
// API but is also part of the lower-level sdkapi interface.
type Observation = sdkapi.Observation
// RecordBatch atomically records a batch of measurements.
func (m Meter) RecordBatch(ctx context.Context, ls []attribute.KeyValue, ms ...Measurement) {
if m.impl == nil {
return
}
m.impl.RecordBatch(ctx, ls, ms...)
}
// NewBatchObserver creates a new BatchObserver that supports
// making batches of observations for multiple instruments.
func (m Meter) NewBatchObserver(callback BatchObserverFunc) BatchObserver {
return BatchObserver{
meter: m,
runner: newBatchAsyncRunner(callback),
}
}
// NewInt64Counter creates a new integer Counter instrument with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewInt64Counter(name string, options ...InstrumentOption) (Int64Counter, error) {
return wrapInt64CounterInstrument(
m.newSync(name, sdkapi.CounterInstrumentKind, number.Int64Kind, options))
}
// NewFloat64Counter creates a new floating point Counter with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewFloat64Counter(name string, options ...InstrumentOption) (Float64Counter, error) {
return wrapFloat64CounterInstrument(
m.newSync(name, sdkapi.CounterInstrumentKind, number.Float64Kind, options))
}
// NewInt64UpDownCounter creates a new integer UpDownCounter instrument with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewInt64UpDownCounter(name string, options ...InstrumentOption) (Int64UpDownCounter, error) {
return wrapInt64UpDownCounterInstrument(
m.newSync(name, sdkapi.UpDownCounterInstrumentKind, number.Int64Kind, options))
}
// NewFloat64UpDownCounter creates a new floating point UpDownCounter with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewFloat64UpDownCounter(name string, options ...InstrumentOption) (Float64UpDownCounter, error) {
return wrapFloat64UpDownCounterInstrument(
m.newSync(name, sdkapi.UpDownCounterInstrumentKind, number.Float64Kind, options))
}
// NewInt64Histogram creates a new integer Histogram instrument with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewInt64Histogram(name string, opts ...InstrumentOption) (Int64Histogram, error) {
return wrapInt64HistogramInstrument(
m.newSync(name, sdkapi.HistogramInstrumentKind, number.Int64Kind, opts))
}
// NewFloat64Histogram creates a new floating point Histogram with the
// given name, customized with options. May return an error if the
// name is invalid (e.g., empty) or improperly registered (e.g.,
// duplicate registration).
func (m Meter) NewFloat64Histogram(name string, opts ...InstrumentOption) (Float64Histogram, error) {
return wrapFloat64HistogramInstrument(
m.newSync(name, sdkapi.HistogramInstrumentKind, number.Float64Kind, opts))
}
// NewInt64GaugeObserver creates a new integer GaugeObserver instrument
// with the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewInt64GaugeObserver(name string, callback Int64ObserverFunc, opts ...InstrumentOption) (Int64GaugeObserver, error) {
if callback == nil {
return wrapInt64GaugeObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64GaugeObserverInstrument(
m.newAsync(name, sdkapi.GaugeObserverInstrumentKind, number.Int64Kind, opts,
newInt64AsyncRunner(callback)))
}
// NewFloat64GaugeObserver creates a new floating point GaugeObserver with
// the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewFloat64GaugeObserver(name string, callback Float64ObserverFunc, opts ...InstrumentOption) (Float64GaugeObserver, error) {
if callback == nil {
return wrapFloat64GaugeObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64GaugeObserverInstrument(
m.newAsync(name, sdkapi.GaugeObserverInstrumentKind, number.Float64Kind, opts,
newFloat64AsyncRunner(callback)))
}
// NewInt64CounterObserver creates a new integer CounterObserver instrument
// with the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewInt64CounterObserver(name string, callback Int64ObserverFunc, opts ...InstrumentOption) (Int64CounterObserver, error) {
if callback == nil {
return wrapInt64CounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64CounterObserverInstrument(
m.newAsync(name, sdkapi.CounterObserverInstrumentKind, number.Int64Kind, opts,
newInt64AsyncRunner(callback)))
}
// NewFloat64CounterObserver creates a new floating point CounterObserver with
// the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewFloat64CounterObserver(name string, callback Float64ObserverFunc, opts ...InstrumentOption) (Float64CounterObserver, error) {
if callback == nil {
return wrapFloat64CounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64CounterObserverInstrument(
m.newAsync(name, sdkapi.CounterObserverInstrumentKind, number.Float64Kind, opts,
newFloat64AsyncRunner(callback)))
}
// NewInt64UpDownCounterObserver creates a new integer UpDownCounterObserver instrument
// with the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewInt64UpDownCounterObserver(name string, callback Int64ObserverFunc, opts ...InstrumentOption) (Int64UpDownCounterObserver, error) {
if callback == nil {
return wrapInt64UpDownCounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64UpDownCounterObserverInstrument(
m.newAsync(name, sdkapi.UpDownCounterObserverInstrumentKind, number.Int64Kind, opts,
newInt64AsyncRunner(callback)))
}
// NewFloat64UpDownCounterObserver creates a new floating point UpDownCounterObserver with
// the given name, running a given callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (m Meter) NewFloat64UpDownCounterObserver(name string, callback Float64ObserverFunc, opts ...InstrumentOption) (Float64UpDownCounterObserver, error) {
if callback == nil {
return wrapFloat64UpDownCounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64UpDownCounterObserverInstrument(
m.newAsync(name, sdkapi.UpDownCounterObserverInstrumentKind, number.Float64Kind, opts,
newFloat64AsyncRunner(callback)))
}
// NewInt64GaugeObserver creates a new integer GaugeObserver instrument
// with the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewInt64GaugeObserver(name string, opts ...InstrumentOption) (Int64GaugeObserver, error) {
if b.runner == nil {
return wrapInt64GaugeObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64GaugeObserverInstrument(
b.meter.newAsync(name, sdkapi.GaugeObserverInstrumentKind, number.Int64Kind, opts, b.runner))
}
// NewFloat64GaugeObserver creates a new floating point GaugeObserver with
// the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewFloat64GaugeObserver(name string, opts ...InstrumentOption) (Float64GaugeObserver, error) {
if b.runner == nil {
return wrapFloat64GaugeObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64GaugeObserverInstrument(
b.meter.newAsync(name, sdkapi.GaugeObserverInstrumentKind, number.Float64Kind, opts,
b.runner))
}
// NewInt64CounterObserver creates a new integer CounterObserver instrument
// with the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewInt64CounterObserver(name string, opts ...InstrumentOption) (Int64CounterObserver, error) {
if b.runner == nil {
return wrapInt64CounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64CounterObserverInstrument(
b.meter.newAsync(name, sdkapi.CounterObserverInstrumentKind, number.Int64Kind, opts, b.runner))
}
// NewFloat64CounterObserver creates a new floating point CounterObserver with
// the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewFloat64CounterObserver(name string, opts ...InstrumentOption) (Float64CounterObserver, error) {
if b.runner == nil {
return wrapFloat64CounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64CounterObserverInstrument(
b.meter.newAsync(name, sdkapi.CounterObserverInstrumentKind, number.Float64Kind, opts,
b.runner))
}
// NewInt64UpDownCounterObserver creates a new integer UpDownCounterObserver instrument
// with the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewInt64UpDownCounterObserver(name string, opts ...InstrumentOption) (Int64UpDownCounterObserver, error) {
if b.runner == nil {
return wrapInt64UpDownCounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapInt64UpDownCounterObserverInstrument(
b.meter.newAsync(name, sdkapi.UpDownCounterObserverInstrumentKind, number.Int64Kind, opts, b.runner))
}
// NewFloat64UpDownCounterObserver creates a new floating point UpDownCounterObserver with
// the given name, running in a batch callback, and customized with
// options. May return an error if the name is invalid (e.g., empty)
// or improperly registered (e.g., duplicate registration).
func (b BatchObserver) NewFloat64UpDownCounterObserver(name string, opts ...InstrumentOption) (Float64UpDownCounterObserver, error) {
if b.runner == nil {
return wrapFloat64UpDownCounterObserverInstrument(sdkapi.NewNoopAsyncInstrument(), nil)
}
return wrapFloat64UpDownCounterObserverInstrument(
b.meter.newAsync(name, sdkapi.UpDownCounterObserverInstrumentKind, number.Float64Kind, opts,
b.runner))
}
// MeterImpl returns the underlying MeterImpl of this Meter.
func (m Meter) MeterImpl() sdkapi.MeterImpl {
return m.impl
}
// newAsync constructs one new asynchronous instrument.
func (m Meter) newAsync(
name string,
mkind sdkapi.InstrumentKind,
nkind number.Kind,
opts []InstrumentOption,
runner sdkapi.AsyncRunner,
) (
sdkapi.AsyncImpl,
error,
) {
if m.impl == nil {
return sdkapi.NewNoopAsyncInstrument(), nil
}
cfg := NewInstrumentConfig(opts...)
desc := sdkapi.NewDescriptor(name, mkind, nkind, cfg.description, cfg.unit)
return m.impl.NewAsyncInstrument(desc, runner)
}
// newSync constructs one new synchronous instrument.
func (m Meter) newSync(
name string,
metricKind sdkapi.InstrumentKind,
numberKind number.Kind,
opts []InstrumentOption,
) (
sdkapi.SyncImpl,
error,
) {
if m.impl == nil {
return sdkapi.NewNoopSyncInstrument(), nil
}
cfg := NewInstrumentConfig(opts...)
desc := sdkapi.NewDescriptor(name, metricKind, numberKind, cfg.description, cfg.unit)
return m.impl.NewSyncInstrument(desc)
}
// MeterMust is a wrapper for Meter interfaces that panics when any
// instrument constructor encounters an error.
type MeterMust struct {
meter Meter
}
// BatchObserverMust is a wrapper for BatchObserver that panics when
// any instrument constructor encounters an error.
type BatchObserverMust struct {
batch BatchObserver
}
// Must constructs a MeterMust implementation from a Meter, allowing
// the application to panic when any instrument constructor yields an
// error.
func Must(meter Meter) MeterMust {
return MeterMust{meter: meter}
}
// NewInt64Counter calls `Meter.NewInt64Counter` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64Counter(name string, cos ...InstrumentOption) Int64Counter {
if inst, err := mm.meter.NewInt64Counter(name, cos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64Counter calls `Meter.NewFloat64Counter` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64Counter(name string, cos ...InstrumentOption) Float64Counter {
if inst, err := mm.meter.NewFloat64Counter(name, cos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64UpDownCounter calls `Meter.NewInt64UpDownCounter` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64UpDownCounter(name string, cos ...InstrumentOption) Int64UpDownCounter {
if inst, err := mm.meter.NewInt64UpDownCounter(name, cos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64UpDownCounter calls `Meter.NewFloat64UpDownCounter` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64UpDownCounter(name string, cos ...InstrumentOption) Float64UpDownCounter {
if inst, err := mm.meter.NewFloat64UpDownCounter(name, cos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64Histogram calls `Meter.NewInt64Histogram` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64Histogram(name string, mos ...InstrumentOption) Int64Histogram {
if inst, err := mm.meter.NewInt64Histogram(name, mos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64Histogram calls `Meter.NewFloat64Histogram` and returns the
// instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64Histogram(name string, mos ...InstrumentOption) Float64Histogram {
if inst, err := mm.meter.NewFloat64Histogram(name, mos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64GaugeObserver calls `Meter.NewInt64GaugeObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64GaugeObserver(name string, callback Int64ObserverFunc, oos ...InstrumentOption) Int64GaugeObserver {
if inst, err := mm.meter.NewInt64GaugeObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64GaugeObserver calls `Meter.NewFloat64GaugeObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64GaugeObserver(name string, callback Float64ObserverFunc, oos ...InstrumentOption) Float64GaugeObserver {
if inst, err := mm.meter.NewFloat64GaugeObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64CounterObserver calls `Meter.NewInt64CounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64CounterObserver(name string, callback Int64ObserverFunc, oos ...InstrumentOption) Int64CounterObserver {
if inst, err := mm.meter.NewInt64CounterObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64CounterObserver calls `Meter.NewFloat64CounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64CounterObserver(name string, callback Float64ObserverFunc, oos ...InstrumentOption) Float64CounterObserver {
if inst, err := mm.meter.NewFloat64CounterObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64UpDownCounterObserver calls `Meter.NewInt64UpDownCounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewInt64UpDownCounterObserver(name string, callback Int64ObserverFunc, oos ...InstrumentOption) Int64UpDownCounterObserver {
if inst, err := mm.meter.NewInt64UpDownCounterObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64UpDownCounterObserver calls `Meter.NewFloat64UpDownCounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (mm MeterMust) NewFloat64UpDownCounterObserver(name string, callback Float64ObserverFunc, oos ...InstrumentOption) Float64UpDownCounterObserver {
if inst, err := mm.meter.NewFloat64UpDownCounterObserver(name, callback, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewBatchObserver returns a wrapper around BatchObserver that panics
// when any instrument constructor returns an error.
func (mm MeterMust) NewBatchObserver(callback BatchObserverFunc) BatchObserverMust {
return BatchObserverMust{
batch: mm.meter.NewBatchObserver(callback),
}
}
// NewInt64GaugeObserver calls `BatchObserver.NewInt64GaugeObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewInt64GaugeObserver(name string, oos ...InstrumentOption) Int64GaugeObserver {
if inst, err := bm.batch.NewInt64GaugeObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64GaugeObserver calls `BatchObserver.NewFloat64GaugeObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewFloat64GaugeObserver(name string, oos ...InstrumentOption) Float64GaugeObserver {
if inst, err := bm.batch.NewFloat64GaugeObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64CounterObserver calls `BatchObserver.NewInt64CounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewInt64CounterObserver(name string, oos ...InstrumentOption) Int64CounterObserver {
if inst, err := bm.batch.NewInt64CounterObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64CounterObserver calls `BatchObserver.NewFloat64CounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewFloat64CounterObserver(name string, oos ...InstrumentOption) Float64CounterObserver {
if inst, err := bm.batch.NewFloat64CounterObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewInt64UpDownCounterObserver calls `BatchObserver.NewInt64UpDownCounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewInt64UpDownCounterObserver(name string, oos ...InstrumentOption) Int64UpDownCounterObserver {
if inst, err := bm.batch.NewInt64UpDownCounterObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}
// NewFloat64UpDownCounterObserver calls `BatchObserver.NewFloat64UpDownCounterObserver` and
// returns the instrument, panicking if it encounters an error.
func (bm BatchObserverMust) NewFloat64UpDownCounterObserver(name string, oos ...InstrumentOption) Float64UpDownCounterObserver {
if inst, err := bm.batch.NewFloat64UpDownCounterObserver(name, oos...); err != nil {
panic(err)
} else {
return inst
}
}

View File

@@ -0,0 +1,608 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric // import "go.opentelemetry.io/otel/metric"
import (
"context"
"errors"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/metric/number"
"go.opentelemetry.io/otel/metric/sdkapi"
)
// ErrSDKReturnedNilImpl is returned when a new `MeterImpl` returns nil.
var ErrSDKReturnedNilImpl = errors.New("SDK returned a nil implementation")
// Int64ObserverFunc is a type of callback that integral
// observers run.
type Int64ObserverFunc func(context.Context, Int64ObserverResult)
// Float64ObserverFunc is a type of callback that floating point
// observers run.
type Float64ObserverFunc func(context.Context, Float64ObserverResult)
// BatchObserverFunc is a callback argument for use with any
// Observer instrument that will be reported as a batch of
// observations.
type BatchObserverFunc func(context.Context, BatchObserverResult)
// Int64ObserverResult is passed to an observer callback to capture
// observations for one asynchronous integer metric instrument.
type Int64ObserverResult struct {
instrument sdkapi.AsyncImpl
function func([]attribute.KeyValue, ...Observation)
}
// Float64ObserverResult is passed to an observer callback to capture
// observations for one asynchronous floating point metric instrument.
type Float64ObserverResult struct {
instrument sdkapi.AsyncImpl
function func([]attribute.KeyValue, ...Observation)
}
// BatchObserverResult is passed to a batch observer callback to
// capture observations for multiple asynchronous instruments.
type BatchObserverResult struct {
function func([]attribute.KeyValue, ...Observation)
}
// Observe captures a single integer value from the associated
// instrument callback, with the given labels.
func (ir Int64ObserverResult) Observe(value int64, labels ...attribute.KeyValue) {
ir.function(labels, sdkapi.NewObservation(ir.instrument, number.NewInt64Number(value)))
}
// Observe captures a single floating point value from the associated
// instrument callback, with the given labels.
func (fr Float64ObserverResult) Observe(value float64, labels ...attribute.KeyValue) {
fr.function(labels, sdkapi.NewObservation(fr.instrument, number.NewFloat64Number(value)))
}
// Observe captures a multiple observations from the associated batch
// instrument callback, with the given labels.
func (br BatchObserverResult) Observe(labels []attribute.KeyValue, obs ...Observation) {
br.function(labels, obs...)
}
var _ sdkapi.AsyncSingleRunner = (*Int64ObserverFunc)(nil)
var _ sdkapi.AsyncSingleRunner = (*Float64ObserverFunc)(nil)
var _ sdkapi.AsyncBatchRunner = (*BatchObserverFunc)(nil)
// newInt64AsyncRunner returns a single-observer callback for integer Observer instruments.
func newInt64AsyncRunner(c Int64ObserverFunc) sdkapi.AsyncSingleRunner {
return &c
}
// newFloat64AsyncRunner returns a single-observer callback for floating point Observer instruments.
func newFloat64AsyncRunner(c Float64ObserverFunc) sdkapi.AsyncSingleRunner {
return &c
}
// newBatchAsyncRunner returns a batch-observer callback use with multiple Observer instruments.
func newBatchAsyncRunner(c BatchObserverFunc) sdkapi.AsyncBatchRunner {
return &c
}
// AnyRunner implements AsyncRunner.
func (*Int64ObserverFunc) AnyRunner() {}
// AnyRunner implements AsyncRunner.
func (*Float64ObserverFunc) AnyRunner() {}
// AnyRunner implements AsyncRunner.
func (*BatchObserverFunc) AnyRunner() {}
// Run implements AsyncSingleRunner.
func (i *Int64ObserverFunc) Run(ctx context.Context, impl sdkapi.AsyncImpl, function func([]attribute.KeyValue, ...Observation)) {
(*i)(ctx, Int64ObserverResult{
instrument: impl,
function: function,
})
}
// Run implements AsyncSingleRunner.
func (f *Float64ObserverFunc) Run(ctx context.Context, impl sdkapi.AsyncImpl, function func([]attribute.KeyValue, ...Observation)) {
(*f)(ctx, Float64ObserverResult{
instrument: impl,
function: function,
})
}
// Run implements AsyncBatchRunner.
func (b *BatchObserverFunc) Run(ctx context.Context, function func([]attribute.KeyValue, ...Observation)) {
(*b)(ctx, BatchObserverResult{
function: function,
})
}
// wrapInt64GaugeObserverInstrument converts an AsyncImpl into Int64GaugeObserver.
func wrapInt64GaugeObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Int64GaugeObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Int64GaugeObserver{asyncInstrument: common}, err
}
// wrapFloat64GaugeObserverInstrument converts an AsyncImpl into Float64GaugeObserver.
func wrapFloat64GaugeObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Float64GaugeObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Float64GaugeObserver{asyncInstrument: common}, err
}
// wrapInt64CounterObserverInstrument converts an AsyncImpl into Int64CounterObserver.
func wrapInt64CounterObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Int64CounterObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Int64CounterObserver{asyncInstrument: common}, err
}
// wrapFloat64CounterObserverInstrument converts an AsyncImpl into Float64CounterObserver.
func wrapFloat64CounterObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Float64CounterObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Float64CounterObserver{asyncInstrument: common}, err
}
// wrapInt64UpDownCounterObserverInstrument converts an AsyncImpl into Int64UpDownCounterObserver.
func wrapInt64UpDownCounterObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Int64UpDownCounterObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Int64UpDownCounterObserver{asyncInstrument: common}, err
}
// wrapFloat64UpDownCounterObserverInstrument converts an AsyncImpl into Float64UpDownCounterObserver.
func wrapFloat64UpDownCounterObserverInstrument(asyncInst sdkapi.AsyncImpl, err error) (Float64UpDownCounterObserver, error) {
common, err := checkNewAsync(asyncInst, err)
return Float64UpDownCounterObserver{asyncInstrument: common}, err
}
// BatchObserver represents an Observer callback that can report
// observations for multiple instruments.
type BatchObserver struct {
meter Meter
runner sdkapi.AsyncBatchRunner
}
// Int64GaugeObserver is a metric that captures a set of int64 values at a
// point in time.
type Int64GaugeObserver struct {
asyncInstrument
}
// Float64GaugeObserver is a metric that captures a set of float64 values
// at a point in time.
type Float64GaugeObserver struct {
asyncInstrument
}
// Int64CounterObserver is a metric that captures a precomputed sum of
// int64 values at a point in time.
type Int64CounterObserver struct {
asyncInstrument
}
// Float64CounterObserver is a metric that captures a precomputed sum of
// float64 values at a point in time.
type Float64CounterObserver struct {
asyncInstrument
}
// Int64UpDownCounterObserver is a metric that captures a precomputed sum of
// int64 values at a point in time.
type Int64UpDownCounterObserver struct {
asyncInstrument
}
// Float64UpDownCounterObserver is a metric that captures a precomputed sum of
// float64 values at a point in time.
type Float64UpDownCounterObserver struct {
asyncInstrument
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (i Int64GaugeObserver) Observation(v int64) Observation {
return sdkapi.NewObservation(i.instrument, number.NewInt64Number(v))
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (f Float64GaugeObserver) Observation(v float64) Observation {
return sdkapi.NewObservation(f.instrument, number.NewFloat64Number(v))
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (i Int64CounterObserver) Observation(v int64) Observation {
return sdkapi.NewObservation(i.instrument, number.NewInt64Number(v))
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (f Float64CounterObserver) Observation(v float64) Observation {
return sdkapi.NewObservation(f.instrument, number.NewFloat64Number(v))
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (i Int64UpDownCounterObserver) Observation(v int64) Observation {
return sdkapi.NewObservation(i.instrument, number.NewInt64Number(v))
}
// Observation returns an Observation, a BatchObserverFunc
// argument, for an asynchronous integer instrument.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (f Float64UpDownCounterObserver) Observation(v float64) Observation {
return sdkapi.NewObservation(f.instrument, number.NewFloat64Number(v))
}
// syncInstrument contains a SyncImpl.
type syncInstrument struct {
instrument sdkapi.SyncImpl
}
// syncBoundInstrument contains a BoundSyncImpl.
type syncBoundInstrument struct {
boundInstrument sdkapi.BoundSyncImpl
}
// asyncInstrument contains a AsyncImpl.
type asyncInstrument struct {
instrument sdkapi.AsyncImpl
}
// AsyncImpl implements AsyncImpl.
func (a asyncInstrument) AsyncImpl() sdkapi.AsyncImpl {
return a.instrument
}
// SyncImpl returns the implementation object for synchronous instruments.
func (s syncInstrument) SyncImpl() sdkapi.SyncImpl {
return s.instrument
}
func (s syncInstrument) bind(labels []attribute.KeyValue) syncBoundInstrument {
return newSyncBoundInstrument(s.instrument.Bind(labels))
}
func (s syncInstrument) float64Measurement(value float64) Measurement {
return sdkapi.NewMeasurement(s.instrument, number.NewFloat64Number(value))
}
func (s syncInstrument) int64Measurement(value int64) Measurement {
return sdkapi.NewMeasurement(s.instrument, number.NewInt64Number(value))
}
func (s syncInstrument) directRecord(ctx context.Context, number number.Number, labels []attribute.KeyValue) {
s.instrument.RecordOne(ctx, number, labels)
}
func (h syncBoundInstrument) directRecord(ctx context.Context, number number.Number) {
h.boundInstrument.RecordOne(ctx, number)
}
// Unbind calls SyncImpl.Unbind.
func (h syncBoundInstrument) Unbind() {
h.boundInstrument.Unbind()
}
// checkNewAsync receives an AsyncImpl and potential
// error, and returns the same types, checking for and ensuring that
// the returned interface is not nil.
func checkNewAsync(instrument sdkapi.AsyncImpl, err error) (asyncInstrument, error) {
if instrument == nil {
if err == nil {
err = ErrSDKReturnedNilImpl
}
instrument = sdkapi.NewNoopAsyncInstrument()
}
return asyncInstrument{
instrument: instrument,
}, err
}
// checkNewSync receives an SyncImpl and potential
// error, and returns the same types, checking for and ensuring that
// the returned interface is not nil.
func checkNewSync(instrument sdkapi.SyncImpl, err error) (syncInstrument, error) {
if instrument == nil {
if err == nil {
err = ErrSDKReturnedNilImpl
}
// Note: an alternate behavior would be to synthesize a new name
// or group all duplicately-named instruments of a certain type
// together and use a tag for the original name, e.g.,
// name = 'invalid.counter.int64'
// label = 'original-name=duplicate-counter-name'
instrument = sdkapi.NewNoopSyncInstrument()
}
return syncInstrument{
instrument: instrument,
}, err
}
func newSyncBoundInstrument(boundInstrument sdkapi.BoundSyncImpl) syncBoundInstrument {
return syncBoundInstrument{
boundInstrument: boundInstrument,
}
}
// wrapInt64CounterInstrument converts a SyncImpl into Int64Counter.
func wrapInt64CounterInstrument(syncInst sdkapi.SyncImpl, err error) (Int64Counter, error) {
common, err := checkNewSync(syncInst, err)
return Int64Counter{syncInstrument: common}, err
}
// wrapFloat64CounterInstrument converts a SyncImpl into Float64Counter.
func wrapFloat64CounterInstrument(syncInst sdkapi.SyncImpl, err error) (Float64Counter, error) {
common, err := checkNewSync(syncInst, err)
return Float64Counter{syncInstrument: common}, err
}
// wrapInt64UpDownCounterInstrument converts a SyncImpl into Int64UpDownCounter.
func wrapInt64UpDownCounterInstrument(syncInst sdkapi.SyncImpl, err error) (Int64UpDownCounter, error) {
common, err := checkNewSync(syncInst, err)
return Int64UpDownCounter{syncInstrument: common}, err
}
// wrapFloat64UpDownCounterInstrument converts a SyncImpl into Float64UpDownCounter.
func wrapFloat64UpDownCounterInstrument(syncInst sdkapi.SyncImpl, err error) (Float64UpDownCounter, error) {
common, err := checkNewSync(syncInst, err)
return Float64UpDownCounter{syncInstrument: common}, err
}
// wrapInt64HistogramInstrument converts a SyncImpl into Int64Histogram.
func wrapInt64HistogramInstrument(syncInst sdkapi.SyncImpl, err error) (Int64Histogram, error) {
common, err := checkNewSync(syncInst, err)
return Int64Histogram{syncInstrument: common}, err
}
// wrapFloat64HistogramInstrument converts a SyncImpl into Float64Histogram.
func wrapFloat64HistogramInstrument(syncInst sdkapi.SyncImpl, err error) (Float64Histogram, error) {
common, err := checkNewSync(syncInst, err)
return Float64Histogram{syncInstrument: common}, err
}
// Float64Counter is a metric that accumulates float64 values.
type Float64Counter struct {
syncInstrument
}
// Int64Counter is a metric that accumulates int64 values.
type Int64Counter struct {
syncInstrument
}
// BoundFloat64Counter is a bound instrument for Float64Counter.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundFloat64Counter struct {
syncBoundInstrument
}
// BoundInt64Counter is a boundInstrument for Int64Counter.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundInt64Counter struct {
syncBoundInstrument
}
// Bind creates a bound instrument for this counter. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Float64Counter) Bind(labels ...attribute.KeyValue) (h BoundFloat64Counter) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Bind creates a bound instrument for this counter. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Int64Counter) Bind(labels ...attribute.KeyValue) (h BoundInt64Counter) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Float64Counter) Measurement(value float64) Measurement {
return c.float64Measurement(value)
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Int64Counter) Measurement(value int64) Measurement {
return c.int64Measurement(value)
}
// Add adds the value to the counter's sum. The labels should contain
// the keys and values to be associated with this value.
func (c Float64Counter) Add(ctx context.Context, value float64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewFloat64Number(value), labels)
}
// Add adds the value to the counter's sum. The labels should contain
// the keys and values to be associated with this value.
func (c Int64Counter) Add(ctx context.Context, value int64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewInt64Number(value), labels)
}
// Add adds the value to the counter's sum using the labels
// previously bound to this counter via Bind()
func (b BoundFloat64Counter) Add(ctx context.Context, value float64) {
b.directRecord(ctx, number.NewFloat64Number(value))
}
// Add adds the value to the counter's sum using the labels
// previously bound to this counter via Bind()
func (b BoundInt64Counter) Add(ctx context.Context, value int64) {
b.directRecord(ctx, number.NewInt64Number(value))
}
// Float64UpDownCounter is a metric instrument that sums floating
// point values.
type Float64UpDownCounter struct {
syncInstrument
}
// Int64UpDownCounter is a metric instrument that sums integer values.
type Int64UpDownCounter struct {
syncInstrument
}
// BoundFloat64UpDownCounter is a bound instrument for Float64UpDownCounter.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundFloat64UpDownCounter struct {
syncBoundInstrument
}
// BoundInt64UpDownCounter is a boundInstrument for Int64UpDownCounter.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundInt64UpDownCounter struct {
syncBoundInstrument
}
// Bind creates a bound instrument for this counter. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Float64UpDownCounter) Bind(labels ...attribute.KeyValue) (h BoundFloat64UpDownCounter) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Bind creates a bound instrument for this counter. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Int64UpDownCounter) Bind(labels ...attribute.KeyValue) (h BoundInt64UpDownCounter) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Float64UpDownCounter) Measurement(value float64) Measurement {
return c.float64Measurement(value)
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Int64UpDownCounter) Measurement(value int64) Measurement {
return c.int64Measurement(value)
}
// Add adds the value to the counter's sum. The labels should contain
// the keys and values to be associated with this value.
func (c Float64UpDownCounter) Add(ctx context.Context, value float64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewFloat64Number(value), labels)
}
// Add adds the value to the counter's sum. The labels should contain
// the keys and values to be associated with this value.
func (c Int64UpDownCounter) Add(ctx context.Context, value int64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewInt64Number(value), labels)
}
// Add adds the value to the counter's sum using the labels
// previously bound to this counter via Bind()
func (b BoundFloat64UpDownCounter) Add(ctx context.Context, value float64) {
b.directRecord(ctx, number.NewFloat64Number(value))
}
// Add adds the value to the counter's sum using the labels
// previously bound to this counter via Bind()
func (b BoundInt64UpDownCounter) Add(ctx context.Context, value int64) {
b.directRecord(ctx, number.NewInt64Number(value))
}
// Float64Histogram is a metric that records float64 values.
type Float64Histogram struct {
syncInstrument
}
// Int64Histogram is a metric that records int64 values.
type Int64Histogram struct {
syncInstrument
}
// BoundFloat64Histogram is a bound instrument for Float64Histogram.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundFloat64Histogram struct {
syncBoundInstrument
}
// BoundInt64Histogram is a bound instrument for Int64Histogram.
//
// It inherits the Unbind function from syncBoundInstrument.
type BoundInt64Histogram struct {
syncBoundInstrument
}
// Bind creates a bound instrument for this Histogram. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Float64Histogram) Bind(labels ...attribute.KeyValue) (h BoundFloat64Histogram) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Bind creates a bound instrument for this Histogram. The labels are
// associated with values recorded via subsequent calls to Record.
func (c Int64Histogram) Bind(labels ...attribute.KeyValue) (h BoundInt64Histogram) {
h.syncBoundInstrument = c.bind(labels)
return
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Float64Histogram) Measurement(value float64) Measurement {
return c.float64Measurement(value)
}
// Measurement creates a Measurement object to use with batch
// recording.
func (c Int64Histogram) Measurement(value int64) Measurement {
return c.int64Measurement(value)
}
// Record adds a new value to the list of Histogram's records. The
// labels should contain the keys and values to be associated with
// this value.
func (c Float64Histogram) Record(ctx context.Context, value float64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewFloat64Number(value), labels)
}
// Record adds a new value to the Histogram's distribution. The
// labels should contain the keys and values to be associated with
// this value.
func (c Int64Histogram) Record(ctx context.Context, value int64, labels ...attribute.KeyValue) {
c.directRecord(ctx, number.NewInt64Number(value), labels)
}
// Record adds a new value to the Histogram's distribution using the labels
// previously bound to the Histogram via Bind().
func (b BoundFloat64Histogram) Record(ctx context.Context, value float64) {
b.directRecord(ctx, number.NewFloat64Number(value))
}
// Record adds a new value to the Histogram's distribution using the labels
// previously bound to the Histogram via Bind().
func (b BoundInt64Histogram) Record(ctx context.Context, value int64) {
b.directRecord(ctx, number.NewInt64Number(value))
}

30
vendor/go.opentelemetry.io/otel/metric/noop.go generated vendored Normal file
View File

@@ -0,0 +1,30 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric // import "go.opentelemetry.io/otel/metric"
type noopMeterProvider struct{}
// NewNoopMeterProvider returns an implementation of MeterProvider that
// performs no operations. The Meter and Instrument created from the returned
// MeterProvider also perform no operations.
func NewNoopMeterProvider() MeterProvider {
return noopMeterProvider{}
}
var _ MeterProvider = noopMeterProvider{}
func (noopMeterProvider) Meter(instrumentationName string, opts ...MeterOption) Meter {
return Meter{}
}

23
vendor/go.opentelemetry.io/otel/metric/number/doc.go generated vendored Normal file
View File

@@ -0,0 +1,23 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package number provides a number abstraction for instruments that
either support int64 or float64 input values.
This package is currently in a pre-GA phase. Backwards incompatible changes
may be introduced in subsequent minor version releases as we work to track the
evolving OpenTelemetry specification and user feedback.
*/
package number // import "go.opentelemetry.io/otel/metric/number"

View File

@@ -0,0 +1,24 @@
// Code generated by "stringer -type=Kind"; DO NOT EDIT.
package number
import "strconv"
func _() {
// An "invalid array index" compiler error signifies that the constant values have changed.
// Re-run the stringer command to generate them again.
var x [1]struct{}
_ = x[Int64Kind-0]
_ = x[Float64Kind-1]
}
const _Kind_name = "Int64KindFloat64Kind"
var _Kind_index = [...]uint8{0, 9, 20}
func (i Kind) String() string {
if i < 0 || i >= Kind(len(_Kind_index)-1) {
return "Kind(" + strconv.FormatInt(int64(i), 10) + ")"
}
return _Kind_name[_Kind_index[i]:_Kind_index[i+1]]
}

538
vendor/go.opentelemetry.io/otel/metric/number/number.go generated vendored Normal file
View File

@@ -0,0 +1,538 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package number // import "go.opentelemetry.io/otel/metric/number"
//go:generate stringer -type=Kind
import (
"fmt"
"math"
"sync/atomic"
"go.opentelemetry.io/otel/internal"
)
// Kind describes the data type of the Number.
type Kind int8
const (
// Int64Kind means that the Number stores int64.
Int64Kind Kind = iota
// Float64Kind means that the Number stores float64.
Float64Kind
)
// Zero returns a zero value for a given Kind
func (k Kind) Zero() Number {
switch k {
case Int64Kind:
return NewInt64Number(0)
case Float64Kind:
return NewFloat64Number(0.)
default:
return Number(0)
}
}
// Minimum returns the minimum representable value
// for a given Kind
func (k Kind) Minimum() Number {
switch k {
case Int64Kind:
return NewInt64Number(math.MinInt64)
case Float64Kind:
return NewFloat64Number(-1. * math.MaxFloat64)
default:
return Number(0)
}
}
// Maximum returns the maximum representable value
// for a given Kind
func (k Kind) Maximum() Number {
switch k {
case Int64Kind:
return NewInt64Number(math.MaxInt64)
case Float64Kind:
return NewFloat64Number(math.MaxFloat64)
default:
return Number(0)
}
}
// Number represents either an integral or a floating point value. It
// needs to be accompanied with a source of Kind that describes
// the actual type of the value stored within Number.
type Number uint64
// - constructors
// NewNumberFromRaw creates a new Number from a raw value.
func NewNumberFromRaw(r uint64) Number {
return Number(r)
}
// NewInt64Number creates an integral Number.
func NewInt64Number(i int64) Number {
return NewNumberFromRaw(internal.Int64ToRaw(i))
}
// NewFloat64Number creates a floating point Number.
func NewFloat64Number(f float64) Number {
return NewNumberFromRaw(internal.Float64ToRaw(f))
}
// NewNumberSignChange returns a number with the same magnitude and
// the opposite sign. `kind` must describe the kind of number in `nn`.
func NewNumberSignChange(kind Kind, nn Number) Number {
switch kind {
case Int64Kind:
return NewInt64Number(-nn.AsInt64())
case Float64Kind:
return NewFloat64Number(-nn.AsFloat64())
}
return nn
}
// - as x
// AsNumber gets the Number.
func (n *Number) AsNumber() Number {
return *n
}
// AsRaw gets the uninterpreted raw value. Might be useful for some
// atomic operations.
func (n *Number) AsRaw() uint64 {
return uint64(*n)
}
// AsInt64 assumes that the value contains an int64 and returns it as
// such.
func (n *Number) AsInt64() int64 {
return internal.RawToInt64(n.AsRaw())
}
// AsFloat64 assumes that the measurement value contains a float64 and
// returns it as such.
func (n *Number) AsFloat64() float64 {
return internal.RawToFloat64(n.AsRaw())
}
// - as x atomic
// AsNumberAtomic gets the Number atomically.
func (n *Number) AsNumberAtomic() Number {
return NewNumberFromRaw(n.AsRawAtomic())
}
// AsRawAtomic gets the uninterpreted raw value atomically. Might be
// useful for some atomic operations.
func (n *Number) AsRawAtomic() uint64 {
return atomic.LoadUint64(n.AsRawPtr())
}
// AsInt64Atomic assumes that the number contains an int64 and returns
// it as such atomically.
func (n *Number) AsInt64Atomic() int64 {
return atomic.LoadInt64(n.AsInt64Ptr())
}
// AsFloat64Atomic assumes that the measurement value contains a
// float64 and returns it as such atomically.
func (n *Number) AsFloat64Atomic() float64 {
return internal.RawToFloat64(n.AsRawAtomic())
}
// - as x ptr
// AsRawPtr gets the pointer to the raw, uninterpreted raw
// value. Might be useful for some atomic operations.
func (n *Number) AsRawPtr() *uint64 {
return (*uint64)(n)
}
// AsInt64Ptr assumes that the number contains an int64 and returns a
// pointer to it.
func (n *Number) AsInt64Ptr() *int64 {
return internal.RawPtrToInt64Ptr(n.AsRawPtr())
}
// AsFloat64Ptr assumes that the number contains a float64 and returns a
// pointer to it.
func (n *Number) AsFloat64Ptr() *float64 {
return internal.RawPtrToFloat64Ptr(n.AsRawPtr())
}
// - coerce
// CoerceToInt64 casts the number to int64. May result in
// data/precision loss.
func (n *Number) CoerceToInt64(kind Kind) int64 {
switch kind {
case Int64Kind:
return n.AsInt64()
case Float64Kind:
return int64(n.AsFloat64())
default:
// you get what you deserve
return 0
}
}
// CoerceToFloat64 casts the number to float64. May result in
// data/precision loss.
func (n *Number) CoerceToFloat64(kind Kind) float64 {
switch kind {
case Int64Kind:
return float64(n.AsInt64())
case Float64Kind:
return n.AsFloat64()
default:
// you get what you deserve
return 0
}
}
// - set
// SetNumber sets the number to the passed number. Both should be of
// the same kind.
func (n *Number) SetNumber(nn Number) {
*n.AsRawPtr() = nn.AsRaw()
}
// SetRaw sets the number to the passed raw value. Both number and the
// raw number should represent the same kind.
func (n *Number) SetRaw(r uint64) {
*n.AsRawPtr() = r
}
// SetInt64 assumes that the number contains an int64 and sets it to
// the passed value.
func (n *Number) SetInt64(i int64) {
*n.AsInt64Ptr() = i
}
// SetFloat64 assumes that the number contains a float64 and sets it
// to the passed value.
func (n *Number) SetFloat64(f float64) {
*n.AsFloat64Ptr() = f
}
// - set atomic
// SetNumberAtomic sets the number to the passed number
// atomically. Both should be of the same kind.
func (n *Number) SetNumberAtomic(nn Number) {
atomic.StoreUint64(n.AsRawPtr(), nn.AsRaw())
}
// SetRawAtomic sets the number to the passed raw value
// atomically. Both number and the raw number should represent the
// same kind.
func (n *Number) SetRawAtomic(r uint64) {
atomic.StoreUint64(n.AsRawPtr(), r)
}
// SetInt64Atomic assumes that the number contains an int64 and sets
// it to the passed value atomically.
func (n *Number) SetInt64Atomic(i int64) {
atomic.StoreInt64(n.AsInt64Ptr(), i)
}
// SetFloat64Atomic assumes that the number contains a float64 and
// sets it to the passed value atomically.
func (n *Number) SetFloat64Atomic(f float64) {
atomic.StoreUint64(n.AsRawPtr(), internal.Float64ToRaw(f))
}
// - swap
// SwapNumber sets the number to the passed number and returns the old
// number. Both this number and the passed number should be of the
// same kind.
func (n *Number) SwapNumber(nn Number) Number {
old := *n
n.SetNumber(nn)
return old
}
// SwapRaw sets the number to the passed raw value and returns the old
// raw value. Both number and the raw number should represent the same
// kind.
func (n *Number) SwapRaw(r uint64) uint64 {
old := n.AsRaw()
n.SetRaw(r)
return old
}
// SwapInt64 assumes that the number contains an int64, sets it to the
// passed value and returns the old int64 value.
func (n *Number) SwapInt64(i int64) int64 {
old := n.AsInt64()
n.SetInt64(i)
return old
}
// SwapFloat64 assumes that the number contains an float64, sets it to
// the passed value and returns the old float64 value.
func (n *Number) SwapFloat64(f float64) float64 {
old := n.AsFloat64()
n.SetFloat64(f)
return old
}
// - swap atomic
// SwapNumberAtomic sets the number to the passed number and returns
// the old number atomically. Both this number and the passed number
// should be of the same kind.
func (n *Number) SwapNumberAtomic(nn Number) Number {
return NewNumberFromRaw(atomic.SwapUint64(n.AsRawPtr(), nn.AsRaw()))
}
// SwapRawAtomic sets the number to the passed raw value and returns
// the old raw value atomically. Both number and the raw number should
// represent the same kind.
func (n *Number) SwapRawAtomic(r uint64) uint64 {
return atomic.SwapUint64(n.AsRawPtr(), r)
}
// SwapInt64Atomic assumes that the number contains an int64, sets it
// to the passed value and returns the old int64 value atomically.
func (n *Number) SwapInt64Atomic(i int64) int64 {
return atomic.SwapInt64(n.AsInt64Ptr(), i)
}
// SwapFloat64Atomic assumes that the number contains an float64, sets
// it to the passed value and returns the old float64 value
// atomically.
func (n *Number) SwapFloat64Atomic(f float64) float64 {
return internal.RawToFloat64(atomic.SwapUint64(n.AsRawPtr(), internal.Float64ToRaw(f)))
}
// - add
// AddNumber assumes that this and the passed number are of the passed
// kind and adds the passed number to this number.
func (n *Number) AddNumber(kind Kind, nn Number) {
switch kind {
case Int64Kind:
n.AddInt64(nn.AsInt64())
case Float64Kind:
n.AddFloat64(nn.AsFloat64())
}
}
// AddRaw assumes that this number and the passed raw value are of the
// passed kind and adds the passed raw value to this number.
func (n *Number) AddRaw(kind Kind, r uint64) {
n.AddNumber(kind, NewNumberFromRaw(r))
}
// AddInt64 assumes that the number contains an int64 and adds the
// passed int64 to it.
func (n *Number) AddInt64(i int64) {
*n.AsInt64Ptr() += i
}
// AddFloat64 assumes that the number contains a float64 and adds the
// passed float64 to it.
func (n *Number) AddFloat64(f float64) {
*n.AsFloat64Ptr() += f
}
// - add atomic
// AddNumberAtomic assumes that this and the passed number are of the
// passed kind and adds the passed number to this number atomically.
func (n *Number) AddNumberAtomic(kind Kind, nn Number) {
switch kind {
case Int64Kind:
n.AddInt64Atomic(nn.AsInt64())
case Float64Kind:
n.AddFloat64Atomic(nn.AsFloat64())
}
}
// AddRawAtomic assumes that this number and the passed raw value are
// of the passed kind and adds the passed raw value to this number
// atomically.
func (n *Number) AddRawAtomic(kind Kind, r uint64) {
n.AddNumberAtomic(kind, NewNumberFromRaw(r))
}
// AddInt64Atomic assumes that the number contains an int64 and adds
// the passed int64 to it atomically.
func (n *Number) AddInt64Atomic(i int64) {
atomic.AddInt64(n.AsInt64Ptr(), i)
}
// AddFloat64Atomic assumes that the number contains a float64 and
// adds the passed float64 to it atomically.
func (n *Number) AddFloat64Atomic(f float64) {
for {
o := n.AsFloat64Atomic()
if n.CompareAndSwapFloat64(o, o+f) {
break
}
}
}
// - compare and swap (atomic only)
// CompareAndSwapNumber does the atomic CAS operation on this
// number. This number and passed old and new numbers should be of the
// same kind.
func (n *Number) CompareAndSwapNumber(on, nn Number) bool {
return atomic.CompareAndSwapUint64(n.AsRawPtr(), on.AsRaw(), nn.AsRaw())
}
// CompareAndSwapRaw does the atomic CAS operation on this
// number. This number and passed old and new raw values should be of
// the same kind.
func (n *Number) CompareAndSwapRaw(or, nr uint64) bool {
return atomic.CompareAndSwapUint64(n.AsRawPtr(), or, nr)
}
// CompareAndSwapInt64 assumes that this number contains an int64 and
// does the atomic CAS operation on it.
func (n *Number) CompareAndSwapInt64(oi, ni int64) bool {
return atomic.CompareAndSwapInt64(n.AsInt64Ptr(), oi, ni)
}
// CompareAndSwapFloat64 assumes that this number contains a float64 and
// does the atomic CAS operation on it.
func (n *Number) CompareAndSwapFloat64(of, nf float64) bool {
return atomic.CompareAndSwapUint64(n.AsRawPtr(), internal.Float64ToRaw(of), internal.Float64ToRaw(nf))
}
// - compare
// CompareNumber compares two Numbers given their kind. Both numbers
// should have the same kind. This returns:
// 0 if the numbers are equal
// -1 if the subject `n` is less than the argument `nn`
// +1 if the subject `n` is greater than the argument `nn`
func (n *Number) CompareNumber(kind Kind, nn Number) int {
switch kind {
case Int64Kind:
return n.CompareInt64(nn.AsInt64())
case Float64Kind:
return n.CompareFloat64(nn.AsFloat64())
default:
// you get what you deserve
return 0
}
}
// CompareRaw compares two numbers, where one is input as a raw
// uint64, interpreting both values as a `kind` of number.
func (n *Number) CompareRaw(kind Kind, r uint64) int {
return n.CompareNumber(kind, NewNumberFromRaw(r))
}
// CompareInt64 assumes that the Number contains an int64 and performs
// a comparison between the value and the other value. It returns the
// typical result of the compare function: -1 if the value is less
// than the other, 0 if both are equal, 1 if the value is greater than
// the other.
func (n *Number) CompareInt64(i int64) int {
this := n.AsInt64()
if this < i {
return -1
} else if this > i {
return 1
}
return 0
}
// CompareFloat64 assumes that the Number contains a float64 and
// performs a comparison between the value and the other value. It
// returns the typical result of the compare function: -1 if the value
// is less than the other, 0 if both are equal, 1 if the value is
// greater than the other.
//
// Do not compare NaN values.
func (n *Number) CompareFloat64(f float64) int {
this := n.AsFloat64()
if this < f {
return -1
} else if this > f {
return 1
}
return 0
}
// - relations to zero
// IsPositive returns true if the actual value is greater than zero.
func (n *Number) IsPositive(kind Kind) bool {
return n.compareWithZero(kind) > 0
}
// IsNegative returns true if the actual value is less than zero.
func (n *Number) IsNegative(kind Kind) bool {
return n.compareWithZero(kind) < 0
}
// IsZero returns true if the actual value is equal to zero.
func (n *Number) IsZero(kind Kind) bool {
return n.compareWithZero(kind) == 0
}
// - misc
// Emit returns a string representation of the raw value of the
// Number. A %d is used for integral values, %f for floating point
// values.
func (n *Number) Emit(kind Kind) string {
switch kind {
case Int64Kind:
return fmt.Sprintf("%d", n.AsInt64())
case Float64Kind:
return fmt.Sprintf("%f", n.AsFloat64())
default:
return ""
}
}
// AsInterface returns the number as an interface{}, typically used
// for Kind-correct JSON conversion.
func (n *Number) AsInterface(kind Kind) interface{} {
switch kind {
case Int64Kind:
return n.AsInt64()
case Float64Kind:
return n.AsFloat64()
default:
return math.NaN()
}
}
// - private stuff
func (n *Number) compareWithZero(kind Kind) int {
switch kind {
case Int64Kind:
return n.CompareInt64(0)
case Float64Kind:
return n.CompareFloat64(0.)
default:
// you get what you deserve
return 0
}
}

View File

@@ -0,0 +1,70 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package sdkapi // import "go.opentelemetry.io/otel/metric/sdkapi"
import (
"go.opentelemetry.io/otel/metric/number"
"go.opentelemetry.io/otel/metric/unit"
)
// Descriptor contains all the settings that describe an instrument,
// including its name, metric kind, number kind, and the configurable
// options.
type Descriptor struct {
name string
instrumentKind InstrumentKind
numberKind number.Kind
description string
unit unit.Unit
}
// NewDescriptor returns a Descriptor with the given contents.
func NewDescriptor(name string, ikind InstrumentKind, nkind number.Kind, description string, unit unit.Unit) Descriptor {
return Descriptor{
name: name,
instrumentKind: ikind,
numberKind: nkind,
description: description,
unit: unit,
}
}
// Name returns the metric instrument's name.
func (d Descriptor) Name() string {
return d.name
}
// InstrumentKind returns the specific kind of instrument.
func (d Descriptor) InstrumentKind() InstrumentKind {
return d.instrumentKind
}
// Description provides a human-readable description of the metric
// instrument.
func (d Descriptor) Description() string {
return d.description
}
// Unit describes the units of the metric instrument. Unitless
// metrics return the empty string.
func (d Descriptor) Unit() unit.Unit {
return d.unit
}
// NumberKind returns whether this instrument is declared over int64,
// float64, or uint64 values.
func (d Descriptor) NumberKind() number.Kind {
return d.numberKind
}

View File

@@ -0,0 +1,80 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:generate stringer -type=InstrumentKind
package sdkapi // import "go.opentelemetry.io/otel/metric/sdkapi"
// InstrumentKind describes the kind of instrument.
type InstrumentKind int8
const (
// HistogramInstrumentKind indicates a Histogram instrument.
HistogramInstrumentKind InstrumentKind = iota
// GaugeObserverInstrumentKind indicates an GaugeObserver instrument.
GaugeObserverInstrumentKind
// CounterInstrumentKind indicates a Counter instrument.
CounterInstrumentKind
// UpDownCounterInstrumentKind indicates a UpDownCounter instrument.
UpDownCounterInstrumentKind
// CounterObserverInstrumentKind indicates a CounterObserver instrument.
CounterObserverInstrumentKind
// UpDownCounterObserverInstrumentKind indicates a UpDownCounterObserver
// instrument.
UpDownCounterObserverInstrumentKind
)
// Synchronous returns whether this is a synchronous kind of instrument.
func (k InstrumentKind) Synchronous() bool {
switch k {
case CounterInstrumentKind, UpDownCounterInstrumentKind, HistogramInstrumentKind:
return true
}
return false
}
// Asynchronous returns whether this is an asynchronous kind of instrument.
func (k InstrumentKind) Asynchronous() bool {
return !k.Synchronous()
}
// Adding returns whether this kind of instrument adds its inputs (as opposed to Grouping).
func (k InstrumentKind) Adding() bool {
switch k {
case CounterInstrumentKind, UpDownCounterInstrumentKind, CounterObserverInstrumentKind, UpDownCounterObserverInstrumentKind:
return true
}
return false
}
// Grouping returns whether this kind of instrument groups its inputs (as opposed to Adding).
func (k InstrumentKind) Grouping() bool {
return !k.Adding()
}
// Monotonic returns whether this kind of instrument exposes a non-decreasing sum.
func (k InstrumentKind) Monotonic() bool {
switch k {
case CounterInstrumentKind, CounterObserverInstrumentKind:
return true
}
return false
}
// PrecomputedSum returns whether this kind of instrument receives precomputed sums.
func (k InstrumentKind) PrecomputedSum() bool {
return k.Adding() && k.Asynchronous()
}

View File

@@ -0,0 +1,28 @@
// Code generated by "stringer -type=InstrumentKind"; DO NOT EDIT.
package sdkapi
import "strconv"
func _() {
// An "invalid array index" compiler error signifies that the constant values have changed.
// Re-run the stringer command to generate them again.
var x [1]struct{}
_ = x[HistogramInstrumentKind-0]
_ = x[GaugeObserverInstrumentKind-1]
_ = x[CounterInstrumentKind-2]
_ = x[UpDownCounterInstrumentKind-3]
_ = x[CounterObserverInstrumentKind-4]
_ = x[UpDownCounterObserverInstrumentKind-5]
}
const _InstrumentKind_name = "HistogramInstrumentKindGaugeObserverInstrumentKindCounterInstrumentKindUpDownCounterInstrumentKindCounterObserverInstrumentKindUpDownCounterObserverInstrumentKind"
var _InstrumentKind_index = [...]uint8{0, 23, 50, 71, 98, 127, 162}
func (i InstrumentKind) String() string {
if i < 0 || i >= InstrumentKind(len(_InstrumentKind_index)-1) {
return "InstrumentKind(" + strconv.FormatInt(int64(i), 10) + ")"
}
return _InstrumentKind_name[_InstrumentKind_index[i]:_InstrumentKind_index[i+1]]
}

64
vendor/go.opentelemetry.io/otel/metric/sdkapi/noop.go generated vendored Normal file
View File

@@ -0,0 +1,64 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package sdkapi // import "go.opentelemetry.io/otel/metric/sdkapi"
import (
"context"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/metric/number"
)
type noopInstrument struct{}
type noopBoundInstrument struct{}
type noopSyncInstrument struct{ noopInstrument }
type noopAsyncInstrument struct{ noopInstrument }
var _ SyncImpl = noopSyncInstrument{}
var _ BoundSyncImpl = noopBoundInstrument{}
var _ AsyncImpl = noopAsyncInstrument{}
// NewNoopSyncInstrument returns a No-op implementation of the
// synchronous instrument interface.
func NewNoopSyncInstrument() SyncImpl {
return noopSyncInstrument{}
}
// NewNoopAsyncInstrument returns a No-op implementation of the
// asynchronous instrument interface.
func NewNoopAsyncInstrument() AsyncImpl {
return noopAsyncInstrument{}
}
func (noopInstrument) Implementation() interface{} {
return nil
}
func (noopInstrument) Descriptor() Descriptor {
return Descriptor{}
}
func (noopBoundInstrument) RecordOne(context.Context, number.Number) {
}
func (noopBoundInstrument) Unbind() {
}
func (noopSyncInstrument) Bind([]attribute.KeyValue) BoundSyncImpl {
return noopBoundInstrument{}
}
func (noopSyncInstrument) RecordOne(context.Context, number.Number, []attribute.KeyValue) {
}

175
vendor/go.opentelemetry.io/otel/metric/sdkapi/sdkapi.go generated vendored Normal file
View File

@@ -0,0 +1,175 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package sdkapi // import "go.opentelemetry.io/otel/metric/sdkapi"
import (
"context"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/metric/number"
)
// MeterImpl is the interface an SDK must implement to supply a Meter
// implementation.
type MeterImpl interface {
// RecordBatch atomically records a batch of measurements.
RecordBatch(ctx context.Context, labels []attribute.KeyValue, measurement ...Measurement)
// NewSyncInstrument returns a newly constructed
// synchronous instrument implementation or an error, should
// one occur.
NewSyncInstrument(descriptor Descriptor) (SyncImpl, error)
// NewAsyncInstrument returns a newly constructed
// asynchronous instrument implementation or an error, should
// one occur.
NewAsyncInstrument(
descriptor Descriptor,
runner AsyncRunner,
) (AsyncImpl, error)
}
// InstrumentImpl is a common interface for synchronous and
// asynchronous instruments.
type InstrumentImpl interface {
// Implementation returns the underlying implementation of the
// instrument, which allows the implementation to gain access
// to its own representation especially from a `Measurement`.
Implementation() interface{}
// Descriptor returns a copy of the instrument's Descriptor.
Descriptor() Descriptor
}
// SyncImpl is the implementation-level interface to a generic
// synchronous instrument (e.g., Histogram and Counter instruments).
type SyncImpl interface {
InstrumentImpl
// Bind creates an implementation-level bound instrument,
// binding a label set with this instrument implementation.
Bind(labels []attribute.KeyValue) BoundSyncImpl
// RecordOne captures a single synchronous metric event.
RecordOne(ctx context.Context, number number.Number, labels []attribute.KeyValue)
}
// BoundSyncImpl is the implementation-level interface to a
// generic bound synchronous instrument
type BoundSyncImpl interface {
// RecordOne captures a single synchronous metric event.
RecordOne(ctx context.Context, number number.Number)
// Unbind frees the resources associated with this bound instrument. It
// does not affect the metric this bound instrument was created through.
Unbind()
}
// AsyncImpl is an implementation-level interface to an
// asynchronous instrument (e.g., Observer instruments).
type AsyncImpl interface {
InstrumentImpl
}
// AsyncRunner is expected to convert into an AsyncSingleRunner or an
// AsyncBatchRunner. SDKs will encounter an error if the AsyncRunner
// does not satisfy one of these interfaces.
type AsyncRunner interface {
// AnyRunner() is a non-exported method with no functional use
// other than to make this a non-empty interface.
AnyRunner()
}
// AsyncSingleRunner is an interface implemented by single-observer
// callbacks.
type AsyncSingleRunner interface {
// Run accepts a single instrument and function for capturing
// observations of that instrument. Each call to the function
// receives one captured observation. (The function accepts
// multiple observations so the same implementation can be
// used for batch runners.)
Run(ctx context.Context, single AsyncImpl, capture func([]attribute.KeyValue, ...Observation))
AsyncRunner
}
// AsyncBatchRunner is an interface implemented by batch-observer
// callbacks.
type AsyncBatchRunner interface {
// Run accepts a function for capturing observations of
// multiple instruments.
Run(ctx context.Context, capture func([]attribute.KeyValue, ...Observation))
AsyncRunner
}
// NewMeasurement constructs a single observation, a binding between
// an asynchronous instrument and a number.
func NewMeasurement(instrument SyncImpl, number number.Number) Measurement {
return Measurement{
instrument: instrument,
number: number,
}
}
// Measurement is a low-level type used with synchronous instruments
// as a direct interface to the SDK via `RecordBatch`.
type Measurement struct {
// number needs to be aligned for 64-bit atomic operations.
number number.Number
instrument SyncImpl
}
// SyncImpl returns the instrument that created this measurement.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (m Measurement) SyncImpl() SyncImpl {
return m.instrument
}
// Number returns a number recorded in this measurement.
func (m Measurement) Number() number.Number {
return m.number
}
// NewObservation constructs a single observation, a binding between
// an asynchronous instrument and a number.
func NewObservation(instrument AsyncImpl, number number.Number) Observation {
return Observation{
instrument: instrument,
number: number,
}
}
// Observation is a low-level type used with asynchronous instruments
// as a direct interface to the SDK via `BatchObserver`.
type Observation struct {
// number needs to be aligned for 64-bit atomic operations.
number number.Number
instrument AsyncImpl
}
// AsyncImpl returns the instrument that created this observation.
// This returns an implementation-level object for use by the SDK,
// users should not refer to this.
func (m Observation) AsyncImpl() AsyncImpl {
return m.instrument
}
// Number returns a number recorded in this observation.
func (m Observation) Number() number.Number {
return m.number
}

20
vendor/go.opentelemetry.io/otel/metric/unit/doc.go generated vendored Normal file
View File

@@ -0,0 +1,20 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package unit provides units.
//
// This package is currently in a pre-GA phase. Backwards incompatible changes
// may be introduced in subsequent minor version releases as we work to track
// the evolving OpenTelemetry specification and user feedback.
package unit // import "go.opentelemetry.io/otel/metric/unit"

24
vendor/go.opentelemetry.io/otel/metric/unit/unit.go generated vendored Normal file
View File

@@ -0,0 +1,24 @@
// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package unit // import "go.opentelemetry.io/otel/metric/unit"
type Unit string
// Units defined by OpenTelemetry.
const (
Dimensionless Unit = "1"
Bytes Unit = "By"
Milliseconds Unit = "ms"
)