robocar-steering/vendor/gocv.io/x/gocv/imgproc.go
2023-11-02 16:04:12 +01:00

2241 lines
74 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package gocv
/*
#include <stdlib.h>
#include "imgproc.h"
*/
import "C"
import (
"errors"
"image"
"image/color"
"reflect"
"unsafe"
)
// ArcLength calculates a contour perimeter or a curve length.
//
// For further details, please see:
//
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga8d26483c636be6b35c3ec6335798a47c
//
func ArcLength(curve PointVector, isClosed bool) float64 {
return float64(C.ArcLength(curve.p, C.bool(isClosed)))
}
// ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
//
// For further details, please see:
//
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga0012a5fdaea70b8a9970165d98722b4c
//
func ApproxPolyDP(curve PointVector, epsilon float64, closed bool) PointVector {
return PointVector{p: C.ApproxPolyDP(curve.p, C.double(epsilon), C.bool(closed))}
}
// ConvexHull finds the convex hull of a point set.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga014b28e56cb8854c0de4a211cb2be656
//
func ConvexHull(points PointVector, hull *Mat, clockwise bool, returnPoints bool) {
C.ConvexHull(points.p, hull.p, C.bool(clockwise), C.bool(returnPoints))
}
// ConvexityDefects finds the convexity defects of a contour.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gada4437098113fd8683c932e0567f47ba
//
func ConvexityDefects(contour PointVector, hull Mat, result *Mat) {
C.ConvexityDefects(contour.p, hull.p, result.p)
}
// CvtColor converts an image from one color space to another.
// It converts the src Mat image to the dst Mat using the
// code param containing the desired ColorConversionCode color space.
//
// For further details, please see:
// http://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga4e0972be5de079fed4e3a10e24ef5ef0
//
func CvtColor(src Mat, dst *Mat, code ColorConversionCode) {
C.CvtColor(src.p, dst.p, C.int(code))
}
// EqualizeHist normalizes the brightness and increases the contrast of the image.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga7e54091f0c937d49bf84152a16f76d6e
func EqualizeHist(src Mat, dst *Mat) {
C.EqualizeHist(src.p, dst.p)
}
// CalcHist Calculates a histogram of a set of images
//
// For futher details, please see:
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga6ca1876785483836f72a77ced8ea759a
func CalcHist(src []Mat, channels []int, mask Mat, hist *Mat, size []int, ranges []float64, acc bool) {
cMatArray := make([]C.Mat, len(src))
for i, r := range src {
cMatArray[i] = r.p
}
cMats := C.struct_Mats{
mats: (*C.Mat)(&cMatArray[0]),
length: C.int(len(src)),
}
chansInts := []C.int{}
for _, v := range channels {
chansInts = append(chansInts, C.int(v))
}
chansVector := C.struct_IntVector{}
chansVector.val = (*C.int)(&chansInts[0])
chansVector.length = (C.int)(len(chansInts))
sizeInts := []C.int{}
for _, v := range size {
sizeInts = append(sizeInts, C.int(v))
}
sizeVector := C.struct_IntVector{}
sizeVector.val = (*C.int)(&sizeInts[0])
sizeVector.length = (C.int)(len(sizeInts))
rangeFloats := []C.float{}
for _, v := range ranges {
rangeFloats = append(rangeFloats, C.float(v))
}
rangeVector := C.struct_FloatVector{}
rangeVector.val = (*C.float)(&rangeFloats[0])
rangeVector.length = (C.int)(len(rangeFloats))
C.CalcHist(cMats, chansVector, mask.p, hist.p, sizeVector, rangeVector, C.bool(acc))
}
// CalcBackProject calculates the back projection of a histogram.
//
// For futher details, please see:
// https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga3a0af640716b456c3d14af8aee12e3ca
func CalcBackProject(src []Mat, channels []int, hist Mat, backProject *Mat, ranges []float64, uniform bool) {
cMatArray := make([]C.Mat, len(src))
for i, r := range src {
cMatArray[i] = r.p
}
cMats := C.struct_Mats{
mats: (*C.Mat)(&cMatArray[0]),
length: C.int(len(src)),
}
chansInts := []C.int{}
for _, v := range channels {
chansInts = append(chansInts, C.int(v))
}
chansVector := C.struct_IntVector{}
chansVector.val = (*C.int)(&chansInts[0])
chansVector.length = (C.int)(len(chansInts))
rangeFloats := []C.float{}
for _, v := range ranges {
rangeFloats = append(rangeFloats, C.float(v))
}
rangeVector := C.struct_FloatVector{}
rangeVector.val = (*C.float)(&rangeFloats[0])
rangeVector.length = (C.int)(len(rangeFloats))
C.CalcBackProject(cMats, chansVector, hist.p, backProject.p, rangeVector, C.bool(uniform))
}
// HistCompMethod is the method for Histogram comparison
// For more information, see https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
type HistCompMethod int
const (
// HistCmpCorrel calculates the Correlation
HistCmpCorrel HistCompMethod = 0
// HistCmpChiSqr calculates the Chi-Square
HistCmpChiSqr HistCompMethod = 1
// HistCmpIntersect calculates the Intersection
HistCmpIntersect HistCompMethod = 2
// HistCmpBhattacharya applies the HistCmpBhattacharya by calculating the Bhattacharya distance.
HistCmpBhattacharya HistCompMethod = 3
// HistCmpHellinger applies the HistCmpBhattacharya comparison. It is a synonym to HistCmpBhattacharya.
HistCmpHellinger = HistCmpBhattacharya
// HistCmpChiSqrAlt applies the Alternative Chi-Square (regularly used for texture comparsion).
HistCmpChiSqrAlt HistCompMethod = 4
// HistCmpKlDiv applies the Kullback-Liebler divergence comparison.
HistCmpKlDiv HistCompMethod = 5
)
// CompareHist Compares two histograms.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
func CompareHist(hist1 Mat, hist2 Mat, method HistCompMethod) float32 {
return float32(C.CompareHist(hist1.p, hist2.p, C.int(method)))
}
// ClipLine clips the line against the image rectangle.
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf483cb46ad6b049bc35ec67052ef1c2c
//
func ClipLine(imgSize image.Point, pt1 image.Point, pt2 image.Point) bool {
pSize := C.struct_Size{
width: C.int(imgSize.X),
height: C.int(imgSize.Y),
}
rPt1 := C.struct_Point{
x: C.int(pt1.X),
y: C.int(pt1.Y),
}
rPt2 := C.struct_Point{
x: C.int(pt2.X),
y: C.int(pt2.Y),
}
return bool(C.ClipLine(pSize, rPt1, rPt2))
}
// BilateralFilter applies a bilateral filter to an image.
//
// Bilateral filtering is described here:
// http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
//
// BilateralFilter can reduce unwanted noise very well while keeping edges
// fairly sharp. However, it is very slow compared to most filters.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga9d7064d478c95d60003cf839430737ed
//
func BilateralFilter(src Mat, dst *Mat, diameter int, sigmaColor float64, sigmaSpace float64) {
C.BilateralFilter(src.p, dst.p, C.int(diameter), C.double(sigmaColor), C.double(sigmaSpace))
}
// Blur blurs an image Mat using a normalized box filter.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
//
func Blur(src Mat, dst *Mat, ksize image.Point) {
pSize := C.struct_Size{
width: C.int(ksize.X),
height: C.int(ksize.Y),
}
C.Blur(src.p, dst.p, pSize)
}
// BoxFilter blurs an image using the box filter.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad533230ebf2d42509547d514f7d3fbc3
//
func BoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) {
pSize := C.struct_Size{
height: C.int(ksize.X),
width: C.int(ksize.Y),
}
C.BoxFilter(src.p, dst.p, C.int(depth), pSize)
}
// SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga045028184a9ef65d7d2579e5c4bff6c0
//
func SqBoxFilter(src Mat, dst *Mat, depth int, ksize image.Point) {
pSize := C.struct_Size{
height: C.int(ksize.X),
width: C.int(ksize.Y),
}
C.SqBoxFilter(src.p, dst.p, C.int(depth), pSize)
}
// Dilate dilates an image by using a specific structuring element.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga4ff0f3318642c4f469d0e11f242f3b6c
//
func Dilate(src Mat, dst *Mat, kernel Mat) {
C.Dilate(src.p, dst.p, kernel.p)
}
// DilateWithParams dilates an image by using a specific structuring element.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga4ff0f3318642c4f469d0e11f242f3b6c
func DilateWithParams(src Mat, dst *Mat, kernel Mat, anchor image.Point, iterations, borderType BorderType, borderValue color.RGBA) {
cAnchor := C.struct_Point{
x: C.int(anchor.X),
y: C.int(anchor.Y),
}
bv := C.struct_Scalar{
val1: C.double(borderValue.B),
val2: C.double(borderValue.G),
val3: C.double(borderValue.R),
val4: C.double(borderValue.A),
}
C.DilateWithParams(src.p, dst.p, kernel.p, cAnchor, C.int(iterations), C.int(borderType), bv)
}
// DistanceTransformLabelTypes are the types of the DistanceTransform algorithm flag
type DistanceTransformLabelTypes int
const (
// DistanceLabelCComp assigns the same label to each connected component of zeros in the source image
// (as well as all the non-zero pixels closest to the connected component).
DistanceLabelCComp DistanceTransformLabelTypes = 0
// DistanceLabelPixel assigns its own label to each zero pixel (and all the non-zero pixels closest to it).
DistanceLabelPixel
)
// DistanceTransformMasks are the marsk sizes for distance transform
type DistanceTransformMasks int
const (
// DistanceMask3 is a mask of size 3
DistanceMask3 DistanceTransformMasks = 0
// DistanceMask5 is a mask of size 3
DistanceMask5
// DistanceMaskPrecise is not currently supported
DistanceMaskPrecise
)
// DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga8a0b7fdfcb7a13dde018988ba3a43042
//
func DistanceTransform(src Mat, dst *Mat, labels *Mat, distType DistanceTypes, maskSize DistanceTransformMasks, labelType DistanceTransformLabelTypes) {
C.DistanceTransform(src.p, dst.p, labels.p, C.int(distType), C.int(maskSize), C.int(labelType))
}
// Erode erodes an image by using a specific structuring element.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaeb1e0c1033e3f6b891a25d0511362aeb
//
func Erode(src Mat, dst *Mat, kernel Mat) {
C.Erode(src.p, dst.p, kernel.p)
}
// ErodeWithParams erodes an image by using a specific structuring element.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaeb1e0c1033e3f6b891a25d0511362aeb
//
func ErodeWithParams(src Mat, dst *Mat, kernel Mat, anchor image.Point, iterations, borderType int) {
cAnchor := C.struct_Point{
x: C.int(anchor.X),
y: C.int(anchor.Y),
}
C.ErodeWithParams(src.p, dst.p, kernel.p, cAnchor, C.int(iterations), C.int(borderType))
}
// RetrievalMode is the mode of the contour retrieval algorithm.
type RetrievalMode int
const (
// RetrievalExternal retrieves only the extreme outer contours.
// It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for all the contours.
RetrievalExternal RetrievalMode = 0
// RetrievalList retrieves all of the contours without establishing
// any hierarchical relationships.
RetrievalList RetrievalMode = 1
// RetrievalCComp retrieves all of the contours and organizes them into
// a two-level hierarchy. At the top level, there are external boundaries
// of the components. At the second level, there are boundaries of the holes.
// If there is another contour inside a hole of a connected component, it
// is still put at the top level.
RetrievalCComp RetrievalMode = 2
// RetrievalTree retrieves all of the contours and reconstructs a full
// hierarchy of nested contours.
RetrievalTree RetrievalMode = 3
// RetrievalFloodfill lacks a description in the original header.
RetrievalFloodfill RetrievalMode = 4
)
// ContourApproximationMode is the mode of the contour approximation algorithm.
type ContourApproximationMode int
const (
// ChainApproxNone stores absolutely all the contour points. That is,
// any 2 subsequent points (x1,y1) and (x2,y2) of the contour will be
// either horizontal, vertical or diagonal neighbors, that is,
// max(abs(x1-x2),abs(y2-y1))==1.
ChainApproxNone ContourApproximationMode = 1
// ChainApproxSimple compresses horizontal, vertical, and diagonal segments
// and leaves only their end points.
// For example, an up-right rectangular contour is encoded with 4 points.
ChainApproxSimple ContourApproximationMode = 2
// ChainApproxTC89L1 applies one of the flavors of the Teh-Chin chain
// approximation algorithms.
ChainApproxTC89L1 ContourApproximationMode = 3
// ChainApproxTC89KCOS applies one of the flavors of the Teh-Chin chain
// approximation algorithms.
ChainApproxTC89KCOS ContourApproximationMode = 4
)
// BoundingRect calculates the up-right bounding rectangle of a point set.
//
// For further details, please see:
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gacb413ddce8e48ff3ca61ed7cf626a366
//
func BoundingRect(contour PointVector) image.Rectangle {
r := C.BoundingRect(contour.p)
rect := image.Rect(int(r.x), int(r.y), int(r.x+r.width), int(r.y+r.height))
return rect
}
// BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
//
// For further Details, please see:
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#gaf78d467e024b4d7936cf9397185d2f5c
//
func BoxPoints(rect RotatedRect, pts *Mat) {
rPoints := toCPoints(rect.Points)
rRect := C.struct_Rect{
x: C.int(rect.BoundingRect.Min.X),
y: C.int(rect.BoundingRect.Min.Y),
width: C.int(rect.BoundingRect.Max.X - rect.BoundingRect.Min.X),
height: C.int(rect.BoundingRect.Max.Y - rect.BoundingRect.Min.Y),
}
rCenter := C.struct_Point{
x: C.int(rect.Center.X),
y: C.int(rect.Center.Y),
}
rSize := C.struct_Size{
width: C.int(rect.Width),
height: C.int(rect.Height),
}
r := C.struct_RotatedRect{
pts: rPoints,
boundingRect: rRect,
center: rCenter,
size: rSize,
angle: C.double(rect.Angle),
}
C.BoxPoints(r, pts.p)
}
// ContourArea calculates a contour area.
//
// For further details, please see:
// https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#ga2c759ed9f497d4a618048a2f56dc97f1
//
func ContourArea(contour PointVector) float64 {
result := C.ContourArea(contour.p)
return float64(result)
}
type RotatedRect struct {
Points []image.Point
BoundingRect image.Rectangle
Center image.Point
Width int
Height int
Angle float64
}
// toPoints converts C.Contour to []image.Points
//
func toPoints(points C.Contour) []image.Point {
pArray := points.points
pLength := int(points.length)
pHdr := reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(pArray)),
Len: pLength,
Cap: pLength,
}
sPoints := *(*[]C.Point)(unsafe.Pointer(&pHdr))
points4 := make([]image.Point, pLength)
for j, pt := range sPoints {
points4[j] = image.Pt(int(pt.x), int(pt.y))
}
return points4
}
// MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga3d476a3417130ae5154aea421ca7ead9
//
func MinAreaRect(points PointVector) RotatedRect {
result := C.MinAreaRect(points.p)
defer C.Points_Close(result.pts)
return RotatedRect{
Points: toPoints(result.pts),
BoundingRect: image.Rect(int(result.boundingRect.x), int(result.boundingRect.y), int(result.boundingRect.x)+int(result.boundingRect.width), int(result.boundingRect.y)+int(result.boundingRect.height)),
Center: image.Pt(int(result.center.x), int(result.center.y)),
Width: int(result.size.width),
Height: int(result.size.height),
Angle: float64(result.angle),
}
}
// FitEllipse Fits an ellipse around a set of 2D points.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf259efaad93098103d6c27b9e4900ffa
//
func FitEllipse(pts PointVector) RotatedRect {
cRect := C.FitEllipse(pts.p)
defer C.Points_Close(cRect.pts)
return RotatedRect{
Points: toPoints(cRect.pts),
BoundingRect: image.Rect(int(cRect.boundingRect.x), int(cRect.boundingRect.y), int(cRect.boundingRect.x)+int(cRect.boundingRect.width), int(cRect.boundingRect.y)+int(cRect.boundingRect.height)),
Center: image.Pt(int(cRect.center.x), int(cRect.center.y)),
Width: int(cRect.size.width),
Height: int(cRect.size.height),
Angle: float64(cRect.angle),
}
}
// MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
//
// For further details, please see:
// https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
func MinEnclosingCircle(pts PointVector) (x, y, radius float32) {
cCenterPoint := C.struct_Point2f{}
var cRadius C.float
C.MinEnclosingCircle(pts.p, &cCenterPoint, &cRadius)
x, y = float32(cCenterPoint.x), float32(cCenterPoint.y)
radius = float32(cRadius)
return x, y, radius
}
// FindContours finds contours in a binary image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga95f5b48d01abc7c2e0732db24689837b
//
func FindContours(src Mat, mode RetrievalMode, method ContourApproximationMode) PointsVector {
hierarchy := NewMat()
defer hierarchy.Close()
return FindContoursWithParams(src, &hierarchy, mode, method)
}
// FindContoursWithParams finds contours in a binary image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
//
func FindContoursWithParams(src Mat, hierarchy *Mat, mode RetrievalMode, method ContourApproximationMode) PointsVector {
return PointsVector{p: C.FindContours(src.p, hierarchy.p, C.int(mode), C.int(method))}
}
// PointPolygonTest performs a point-in-contour test.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga1a539e8db2135af2566103705d7a5722
//
func PointPolygonTest(pts PointVector, pt image.Point, measureDist bool) float64 {
cp := C.struct_Point{
x: C.int(pt.X),
y: C.int(pt.Y),
}
return float64(C.PointPolygonTest(pts.p, cp, C.bool(measureDist)))
}
//ConnectedComponentsAlgorithmType specifies the type for ConnectedComponents
type ConnectedComponentsAlgorithmType int
const (
// SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity.
CCL_WU ConnectedComponentsAlgorithmType = 0
// BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity.
CCL_DEFAULT ConnectedComponentsAlgorithmType = 1
// BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity
CCL_GRANA ConnectedComponentsAlgorithmType = 2
)
// ConnectedComponents computes the connected components labeled image of boolean image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5
//
func ConnectedComponents(src Mat, labels *Mat) int {
return int(C.ConnectedComponents(src.p, labels.p, C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT)))
}
// ConnectedComponents computes the connected components labeled image of boolean image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaedef8c7340499ca391d459122e51bef5
//
func ConnectedComponentsWithParams(src Mat, labels *Mat, conn int, ltype MatType,
ccltype ConnectedComponentsAlgorithmType) int {
return int(C.ConnectedComponents(src.p, labels.p, C.int(conn), C.int(ltype), C.int(ccltype)))
}
// ConnectedComponentsTypes are the connected components algorithm output formats
type ConnectedComponentsTypes int
const (
//The leftmost (x) coordinate which is the inclusive start of the bounding box in the horizontal direction.
CC_STAT_LEFT ConnectedComponentsTypes = 0
//The topmost (y) coordinate which is the inclusive start of the bounding box in the vertical direction.
CC_STAT_TOP ConnectedComponentsTypes = 1
// The horizontal size of the bounding box.
CC_STAT_WIDTH ConnectedComponentsTypes = 2
// The vertical size of the bounding box.
CC_STAT_HEIGHT ConnectedComponentsTypes = 3
// The total area (in pixels) of the connected component.
CC_STAT_AREA ConnectedComponentsTypes = 4
CC_STAT_MAX ConnectedComponentsTypes = 5
)
// ConnectedComponentsWithStats computes the connected components labeled image of boolean
// image and also produces a statistics output for each label.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
//
func ConnectedComponentsWithStats(src Mat, labels *Mat, stats *Mat, centroids *Mat) int {
return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p,
C.int(8), C.int(MatTypeCV32S), C.int(CCL_DEFAULT)))
}
// ConnectedComponentsWithStats computes the connected components labeled image of boolean
// image and also produces a statistics output for each label.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
//
func ConnectedComponentsWithStatsWithParams(src Mat, labels *Mat, stats *Mat, centroids *Mat,
conn int, ltype MatType, ccltype ConnectedComponentsAlgorithmType) int {
return int(C.ConnectedComponentsWithStats(src.p, labels.p, stats.p, centroids.p, C.int(conn),
C.int(ltype), C.int(ccltype)))
}
// TemplateMatchMode is the type of the template matching operation.
type TemplateMatchMode int
const (
// TmSqdiff maps to TM_SQDIFF
TmSqdiff TemplateMatchMode = 0
// TmSqdiffNormed maps to TM_SQDIFF_NORMED
TmSqdiffNormed TemplateMatchMode = 1
// TmCcorr maps to TM_CCORR
TmCcorr TemplateMatchMode = 2
// TmCcorrNormed maps to TM_CCORR_NORMED
TmCcorrNormed TemplateMatchMode = 3
// TmCcoeff maps to TM_CCOEFF
TmCcoeff TemplateMatchMode = 4
// TmCcoeffNormed maps to TM_CCOEFF_NORMED
TmCcoeffNormed TemplateMatchMode = 5
)
// MatchTemplate compares a template against overlapped image regions.
//
// For further details, please see:
// https://docs.opencv.org/master/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
//
func MatchTemplate(image Mat, templ Mat, result *Mat, method TemplateMatchMode, mask Mat) {
C.MatchTemplate(image.p, templ.p, result.p, C.int(method), mask.p)
}
// Moments calculates all of the moments up to the third order of a polygon
// or rasterized shape.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#ga556a180f43cab22649c23ada36a8a139
//
func Moments(src Mat, binaryImage bool) map[string]float64 {
r := C.Moments(src.p, C.bool(binaryImage))
result := make(map[string]float64)
result["m00"] = float64(r.m00)
result["m10"] = float64(r.m10)
result["m01"] = float64(r.m01)
result["m20"] = float64(r.m20)
result["m11"] = float64(r.m11)
result["m02"] = float64(r.m02)
result["m30"] = float64(r.m30)
result["m21"] = float64(r.m21)
result["m12"] = float64(r.m12)
result["m03"] = float64(r.m03)
result["mu20"] = float64(r.mu20)
result["mu11"] = float64(r.mu11)
result["mu02"] = float64(r.mu02)
result["mu30"] = float64(r.mu30)
result["mu21"] = float64(r.mu21)
result["mu12"] = float64(r.mu12)
result["mu03"] = float64(r.mu03)
result["nu20"] = float64(r.nu20)
result["nu11"] = float64(r.nu11)
result["nu02"] = float64(r.nu02)
result["nu30"] = float64(r.nu30)
result["nu21"] = float64(r.nu21)
result["nu12"] = float64(r.nu12)
result["nu03"] = float64(r.nu03)
return result
}
// PyrDown blurs an image and downsamples it.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaf9bba239dfca11654cb7f50f889fc2ff
//
func PyrDown(src Mat, dst *Mat, ksize image.Point, borderType BorderType) {
pSize := C.struct_Size{
height: C.int(ksize.X),
width: C.int(ksize.Y),
}
C.PyrDown(src.p, dst.p, pSize, C.int(borderType))
}
// PyrUp upsamples an image and then blurs it.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gada75b59bdaaca411ed6fee10085eb784
//
func PyrUp(src Mat, dst *Mat, ksize image.Point, borderType BorderType) {
pSize := C.struct_Size{
height: C.int(ksize.X),
width: C.int(ksize.Y),
}
C.PyrUp(src.p, dst.p, pSize, C.int(borderType))
}
// MorphologyDefaultBorder returns "magic" border value for erosion and dilation.
// It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga94756fad83d9d24d29c9bf478558c40a
//
func MorphologyDefaultBorderValue() Scalar {
var scalar C.Scalar = C.MorphologyDefaultBorderValue()
return NewScalar(float64(scalar.val1), float64(scalar.val2), float64(scalar.val3), float64(scalar.val4))
}
// MorphologyEx performs advanced morphological transformations.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f
//
func MorphologyEx(src Mat, dst *Mat, op MorphType, kernel Mat) {
C.MorphologyEx(src.p, dst.p, C.int(op), kernel.p)
}
// MorphologyExWithParams performs advanced morphological transformations.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f
//
func MorphologyExWithParams(src Mat, dst *Mat, op MorphType, kernel Mat, iterations int, borderType BorderType) {
pt := C.struct_Point{
x: C.int(-1),
y: C.int(-1),
}
C.MorphologyExWithParams(src.p, dst.p, C.int(op), kernel.p, pt, C.int(iterations), C.int(borderType))
}
// MorphShape is the shape of the structuring element used for Morphing operations.
type MorphShape int
const (
// MorphRect is the rectangular morph shape.
MorphRect MorphShape = 0
// MorphCross is the cross morph shape.
MorphCross MorphShape = 1
// MorphEllipse is the ellipse morph shape.
MorphEllipse MorphShape = 2
)
// GetStructuringElement returns a structuring element of the specified size
// and shape for morphological operations.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac342a1bb6eabf6f55c803b09268e36dc
//
func GetStructuringElement(shape MorphShape, ksize image.Point) Mat {
sz := C.struct_Size{
width: C.int(ksize.X),
height: C.int(ksize.Y),
}
return newMat(C.GetStructuringElement(C.int(shape), sz))
}
// MorphType type of morphological operation.
type MorphType int
const (
// MorphErode operation
MorphErode MorphType = 0
// MorphDilate operation
MorphDilate MorphType = 1
// MorphOpen operation
MorphOpen MorphType = 2
// MorphClose operation
MorphClose MorphType = 3
// MorphGradient operation
MorphGradient MorphType = 4
// MorphTophat operation
MorphTophat MorphType = 5
// MorphBlackhat operation
MorphBlackhat MorphType = 6
// MorphHitmiss operation
MorphHitmiss MorphType = 7
)
// BorderType type of border.
type BorderType int
const (
// BorderConstant border type
BorderConstant BorderType = 0
// BorderReplicate border type
BorderReplicate BorderType = 1
// BorderReflect border type
BorderReflect BorderType = 2
// BorderWrap border type
BorderWrap BorderType = 3
// BorderReflect101 border type
BorderReflect101 BorderType = 4
// BorderTransparent border type
BorderTransparent BorderType = 5
// BorderDefault border type
BorderDefault = BorderReflect101
// BorderIsolated border type
BorderIsolated BorderType = 16
)
// GaussianBlur blurs an image Mat using a Gaussian filter.
// The function convolves the src Mat image into the dst Mat using
// the specified Gaussian kernel params.
//
// For further details, please see:
// http://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaabe8c836e97159a9193fb0b11ac52cf1
//
func GaussianBlur(src Mat, dst *Mat, ksize image.Point, sigmaX float64,
sigmaY float64, borderType BorderType) {
pSize := C.struct_Size{
width: C.int(ksize.X),
height: C.int(ksize.Y),
}
C.GaussianBlur(src.p, dst.p, pSize, C.double(sigmaX), C.double(sigmaY), C.int(borderType))
}
// GetGaussianKernel returns Gaussian filter coefficients.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
func GetGaussianKernel(ksize int, sigma float64) Mat {
return newMat(C.GetGaussianKernel(C.int(ksize), C.double(sigma), C.int(MatTypeCV64F)))
}
// GetGaussianKernelWithParams returns Gaussian filter coefficients.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
func GetGaussianKernelWithParams(ksize int, sigma float64, ktype MatType) Mat {
return newMat(C.GetGaussianKernel(C.int(ksize), C.double(sigma), C.int(ktype)))
}
// Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gacea54f142e81b6758cb6f375ce782c8d
//
func Sobel(src Mat, dst *Mat, ddepth MatType, dx, dy, ksize int, scale, delta float64, borderType BorderType) {
C.Sobel(src.p, dst.p, C.int(ddepth), C.int(dx), C.int(dy), C.int(ksize), C.double(scale), C.double(delta), C.int(borderType))
}
// SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga405d03b20c782b65a4daf54d233239a2
//
func SpatialGradient(src Mat, dx, dy *Mat, ksize MatType, borderType BorderType) {
C.SpatialGradient(src.p, dx.p, dy.p, C.int(ksize), C.int(borderType))
}
// Laplacian calculates the Laplacian of an image.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gad78703e4c8fe703d479c1860d76429e6
//
func Laplacian(src Mat, dst *Mat, dDepth MatType, size int, scale float64,
delta float64, borderType BorderType) {
C.Laplacian(src.p, dst.p, C.int(dDepth), C.int(size), C.double(scale), C.double(delta), C.int(borderType))
}
// Scharr calculates the first x- or y- image derivative using Scharr operator.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#gaa13106761eedf14798f37aa2d60404c9
//
func Scharr(src Mat, dst *Mat, dDepth MatType, dx int, dy int, scale float64,
delta float64, borderType BorderType) {
C.Scharr(src.p, dst.p, C.int(dDepth), C.int(dx), C.int(dy), C.double(scale), C.double(delta), C.int(borderType))
}
// MedianBlur blurs an image using the median filter.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga564869aa33e58769b4469101aac458f9
//
func MedianBlur(src Mat, dst *Mat, ksize int) {
C.MedianBlur(src.p, dst.p, C.int(ksize))
}
// Canny finds edges in an image using the Canny algorithm.
// The function finds edges in the input image image and marks
// them in the output map edges using the Canny algorithm.
// The smallest value between threshold1 and threshold2 is used
// for edge linking. The largest value is used to
// find initial segments of strong edges.
// See http://en.wikipedia.org/wiki/Canny_edge_detector
//
// For further details, please see:
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
//
func Canny(src Mat, edges *Mat, t1 float32, t2 float32) {
C.Canny(src.p, edges.p, C.double(t1), C.double(t2))
}
// CornerSubPix Refines the corner locations. The function iterates to find
// the sub-pixel accurate location of corners or radial saddle points.
//
// For further details, please see:
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga354e0d7c86d0d9da75de9b9701a9a87e
//
func CornerSubPix(img Mat, corners *Mat, winSize image.Point, zeroZone image.Point, criteria TermCriteria) {
winSz := C.struct_Size{
width: C.int(winSize.X),
height: C.int(winSize.Y),
}
zeroSz := C.struct_Size{
width: C.int(zeroZone.X),
height: C.int(zeroZone.Y),
}
C.CornerSubPix(img.p, corners.p, winSz, zeroSz, criteria.p)
return
}
// GoodFeaturesToTrack determines strong corners on an image. The function
// finds the most prominent corners in the image or in the specified image region.
//
// For further details, please see:
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga1d6bb77486c8f92d79c8793ad995d541
//
func GoodFeaturesToTrack(img Mat, corners *Mat, maxCorners int, quality float64, minDist float64) {
C.GoodFeaturesToTrack(img.p, corners.p, C.int(maxCorners), C.double(quality), C.double(minDist))
}
// GrabCutMode is the flag for GrabCut algorithm.
type GrabCutMode int
const (
// GCInitWithRect makes the function initialize the state and the mask using the provided rectangle.
// After that it runs the itercount iterations of the algorithm.
GCInitWithRect GrabCutMode = 0
// GCInitWithMask makes the function initialize the state using the provided mask.
// GCInitWithMask and GCInitWithRect can be combined.
// Then all the pixels outside of the ROI are automatically initialized with GC_BGD.
GCInitWithMask GrabCutMode = 1
// GCEval means that the algorithm should just resume.
GCEval GrabCutMode = 2
// GCEvalFreezeModel means that the algorithm should just run a single iteration of the GrabCut algorithm
// with the fixed model
GCEvalFreezeModel GrabCutMode = 3
)
// Grabcut runs the GrabCut algorithm.
// The function implements the GrabCut image segmentation algorithm.
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga909c1dda50efcbeaa3ce126be862b37f
//
func GrabCut(img Mat, mask *Mat, r image.Rectangle, bgdModel *Mat, fgdModel *Mat, iterCount int, mode GrabCutMode) {
cRect := C.struct_Rect{
x: C.int(r.Min.X),
y: C.int(r.Min.Y),
width: C.int(r.Size().X),
height: C.int(r.Size().Y),
}
C.GrabCut(img.p, mask.p, cRect, bgdModel.p, fgdModel.p, C.int(iterCount), C.int(mode))
}
// HoughMode is the type for Hough transform variants.
type HoughMode int
const (
// HoughStandard is the classical or standard Hough transform.
HoughStandard HoughMode = 0
// HoughProbabilistic is the probabilistic Hough transform (more efficient
// in case if the picture contains a few long linear segments).
HoughProbabilistic HoughMode = 1
// HoughMultiScale is the multi-scale variant of the classical Hough
// transform.
HoughMultiScale HoughMode = 2
// HoughGradient is basically 21HT, described in: HK Yuen, John Princen,
// John Illingworth, and Josef Kittler. Comparative study of hough
// transform methods for circle finding. Image and Vision Computing,
// 8(1):7177, 1990.
HoughGradient HoughMode = 3
)
// HoughCircles finds circles in a grayscale image using the Hough transform.
// The only "method" currently supported is HoughGradient. If you want to pass
// more parameters, please see `HoughCirclesWithParams`.
//
// For further details, please see:
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d
//
func HoughCircles(src Mat, circles *Mat, method HoughMode, dp, minDist float64) {
C.HoughCircles(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist))
}
// HoughCirclesWithParams finds circles in a grayscale image using the Hough
// transform. The only "method" currently supported is HoughGradient.
//
// For further details, please see:
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga47849c3be0d0406ad3ca45db65a25d2d
//
func HoughCirclesWithParams(src Mat, circles *Mat, method HoughMode, dp, minDist, param1, param2 float64, minRadius, maxRadius int) {
C.HoughCirclesWithParams(src.p, circles.p, C.int(method), C.double(dp), C.double(minDist), C.double(param1), C.double(param2), C.int(minRadius), C.int(maxRadius))
}
// HoughLines implements the standard or standard multi-scale Hough transform
// algorithm for line detection. For a good explanation of Hough transform, see:
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
//
// For further details, please see:
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga46b4e588934f6c8dfd509cc6e0e4545a
//
func HoughLines(src Mat, lines *Mat, rho float32, theta float32, threshold int) {
C.HoughLines(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold))
}
// HoughLinesP implements the probabilistic Hough transform
// algorithm for line detection. For a good explanation of Hough transform, see:
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
//
// For further details, please see:
// http://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga8618180a5948286384e3b7ca02f6feeb
//
func HoughLinesP(src Mat, lines *Mat, rho float32, theta float32, threshold int) {
C.HoughLinesP(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold))
}
func HoughLinesPWithParams(src Mat, lines *Mat, rho float32, theta float32, threshold int, minLineLength float32, maxLineGap float32) {
C.HoughLinesPWithParams(src.p, lines.p, C.double(rho), C.double(theta), C.int(threshold), C.double(minLineLength), C.double(maxLineGap))
}
// HoughLinesPointSet implements the Hough transform algorithm for line
// detection on a set of points. For a good explanation of Hough transform, see:
// http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
//
// For further details, please see:
// https://docs.opencv.org/master/dd/d1a/group__imgproc__feature.html#ga2858ef61b4e47d1919facac2152a160e
//
func HoughLinesPointSet(points Mat, lines *Mat, linesMax int, threshold int,
minRho float32, maxRho float32, rhoStep float32,
minTheta float32, maxTheta float32, thetaStep float32) {
C.HoughLinesPointSet(points.p, lines.p, C.int(linesMax), C.int(threshold),
C.double(minRho), C.double(maxRho), C.double(rhoStep),
C.double(minTheta), C.double(maxTheta), C.double(thetaStep))
}
// Integral calculates one or more integral images for the source image.
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
//
func Integral(src Mat, sum *Mat, sqsum *Mat, tilted *Mat) {
C.Integral(src.p, sum.p, sqsum.p, tilted.p)
}
// ThresholdType type of threshold operation.
type ThresholdType int
const (
// ThresholdBinary threshold type
ThresholdBinary ThresholdType = 0
// ThresholdBinaryInv threshold type
ThresholdBinaryInv ThresholdType = 1
// ThresholdTrunc threshold type
ThresholdTrunc ThresholdType = 2
// ThresholdToZero threshold type
ThresholdToZero ThresholdType = 3
// ThresholdToZeroInv threshold type
ThresholdToZeroInv ThresholdType = 4
// ThresholdMask threshold type
ThresholdMask ThresholdType = 7
// ThresholdOtsu threshold type
ThresholdOtsu ThresholdType = 8
// ThresholdTriangle threshold type
ThresholdTriangle ThresholdType = 16
)
// Threshold applies a fixed-level threshold to each array element.
//
// For further details, please see:
// https://docs.opencv.org/3.3.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
//
func Threshold(src Mat, dst *Mat, thresh float32, maxvalue float32, typ ThresholdType) (threshold float32) {
return float32(C.Threshold(src.p, dst.p, C.double(thresh), C.double(maxvalue), C.int(typ)))
}
// AdaptiveThresholdType type of adaptive threshold operation.
type AdaptiveThresholdType int
const (
// AdaptiveThresholdMean threshold type
AdaptiveThresholdMean AdaptiveThresholdType = 0
// AdaptiveThresholdGaussian threshold type
AdaptiveThresholdGaussian AdaptiveThresholdType = 1
)
// AdaptiveThreshold applies a fixed-level threshold to each array element.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga72b913f352e4a1b1b397736707afcde3
//
func AdaptiveThreshold(src Mat, dst *Mat, maxValue float32, adaptiveTyp AdaptiveThresholdType, typ ThresholdType, blockSize int, c float32) {
C.AdaptiveThreshold(src.p, dst.p, C.double(maxValue), C.int(adaptiveTyp), C.int(typ), C.int(blockSize), C.double(c))
}
// ArrowedLine draws a arrow segment pointing from the first point
// to the second one.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga0a165a3ca093fd488ac709fdf10c05b2
//
func ArrowedLine(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) {
sp1 := C.struct_Point{
x: C.int(pt1.X),
y: C.int(pt1.Y),
}
sp2 := C.struct_Point{
x: C.int(pt2.X),
y: C.int(pt2.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.ArrowedLine(img.p, sp1, sp2, sColor, C.int(thickness))
}
// Circle draws a circle.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf10604b069374903dbd0f0488cb43670
//
func Circle(img *Mat, center image.Point, radius int, c color.RGBA, thickness int) {
pc := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.Circle(img.p, pc, C.int(radius), sColor, C.int(thickness))
}
// CircleWithParams draws a circle.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf10604b069374903dbd0f0488cb43670
//
func CircleWithParams(img *Mat, center image.Point, radius int, c color.RGBA, thickness int, lineType LineType, shift int) {
pc := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.CircleWithParams(img.p, pc, C.int(radius), sColor, C.int(thickness), C.int(lineType), C.int(shift))
}
// Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga28b2267d35786f5f890ca167236cbc69
//
func Ellipse(img *Mat, center, axes image.Point, angle, startAngle, endAngle float64, c color.RGBA, thickness int) {
pc := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
pa := C.struct_Point{
x: C.int(axes.X),
y: C.int(axes.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.Ellipse(img.p, pc, pa, C.double(angle), C.double(startAngle), C.double(endAngle), sColor, C.int(thickness))
}
// Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga28b2267d35786f5f890ca167236cbc69
//
func EllipseWithParams(img *Mat, center, axes image.Point, angle, startAngle, endAngle float64, c color.RGBA, thickness int, lineType LineType, shift int) {
pc := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
pa := C.struct_Point{
x: C.int(axes.X),
y: C.int(axes.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.EllipseWithParams(img.p, pc, pa, C.double(angle), C.double(startAngle), C.double(endAngle), sColor, C.int(thickness), C.int(lineType), C.int(shift))
}
// Line draws a line segment connecting two points.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga7078a9fae8c7e7d13d24dac2520ae4a2
//
func Line(img *Mat, pt1 image.Point, pt2 image.Point, c color.RGBA, thickness int) {
sp1 := C.struct_Point{
x: C.int(pt1.X),
y: C.int(pt1.Y),
}
sp2 := C.struct_Point{
x: C.int(pt2.X),
y: C.int(pt2.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.Line(img.p, sp1, sp2, sColor, C.int(thickness))
}
// Rectangle draws a simple, thick, or filled up-right rectangle.
// It renders a rectangle with the desired characteristics to the target Mat image.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga346ac30b5c74e9b5137576c9ee9e0e8c
//
func Rectangle(img *Mat, r image.Rectangle, c color.RGBA, thickness int) {
cRect := C.struct_Rect{
x: C.int(r.Min.X),
y: C.int(r.Min.Y),
width: C.int(r.Size().X),
height: C.int(r.Size().Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.Rectangle(img.p, cRect, sColor, C.int(thickness))
}
// RectangleWithParams draws a simple, thick, or filled up-right rectangle.
// It renders a rectangle with the desired characteristics to the target Mat image.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga346ac30b5c74e9b5137576c9ee9e0e8c
//
func RectangleWithParams(img *Mat, r image.Rectangle, c color.RGBA, thickness int, lineType LineType, shift int) {
cRect := C.struct_Rect{
x: C.int(r.Min.X),
y: C.int(r.Min.Y),
width: C.int(r.Size().X),
height: C.int(r.Size().Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.RectangleWithParams(img.p, cRect, sColor, C.int(thickness), C.int(lineType), C.int(shift))
}
// FillPoly fills the area bounded by one or more polygons.
//
// For more information, see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf30888828337aa4c6b56782b5dfbd4b7
func FillPoly(img *Mat, pts PointsVector, c color.RGBA) {
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.FillPoly(img.p, pts.p, sColor)
}
// FillPolyWithParams fills the area bounded by one or more polygons.
//
// For more information, see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf30888828337aa4c6b56782b5dfbd4b7
func FillPolyWithParams(img *Mat, pts PointsVector, c color.RGBA, lineType LineType, shift int, offset image.Point) {
offsetP := C.struct_Point{
x: C.int(offset.X),
y: C.int(offset.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.FillPolyWithParams(img.p, pts.p, sColor, C.int(lineType), C.int(shift), offsetP)
}
// Polylines draws several polygonal curves.
//
// For more information, see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga1ea127ffbbb7e0bfc4fd6fd2eb64263c
func Polylines(img *Mat, pts PointsVector, isClosed bool, c color.RGBA, thickness int) {
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.Polylines(img.p, pts.p, C.bool(isClosed), sColor, C.int(thickness))
}
// HersheyFont are the font libraries included in OpenCV.
// Only a subset of the available Hershey fonts are supported by OpenCV.
//
// For more information, see:
// http://sources.isc.org/utils/misc/hershey-font.txt
//
type HersheyFont int
const (
// FontHersheySimplex is normal size sans-serif font.
FontHersheySimplex HersheyFont = 0
// FontHersheyPlain issmall size sans-serif font.
FontHersheyPlain HersheyFont = 1
// FontHersheyDuplex normal size sans-serif font
// (more complex than FontHersheySIMPLEX).
FontHersheyDuplex HersheyFont = 2
// FontHersheyComplex i a normal size serif font.
FontHersheyComplex HersheyFont = 3
// FontHersheyTriplex is a normal size serif font
// (more complex than FontHersheyCOMPLEX).
FontHersheyTriplex HersheyFont = 4
// FontHersheyComplexSmall is a smaller version of FontHersheyCOMPLEX.
FontHersheyComplexSmall HersheyFont = 5
// FontHersheyScriptSimplex is a hand-writing style font.
FontHersheyScriptSimplex HersheyFont = 6
// FontHersheyScriptComplex is a more complex variant of FontHersheyScriptSimplex.
FontHersheyScriptComplex HersheyFont = 7
// FontItalic is the flag for italic font.
FontItalic HersheyFont = 16
)
// LineType are the line libraries included in OpenCV.
//
// For more information, see:
// https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/enum_cv_LineTypes.html
//
type LineType int
const (
// Filled line
Filled LineType = -1
// Line4 4-connected line
Line4 LineType = 4
// Line8 8-connected line
Line8 LineType = 8
// LineAA antialiased line
LineAA LineType = 16
)
// GetTextSize calculates the width and height of a text string.
// It returns an image.Point with the size required to draw text using
// a specific font face, scale, and thickness.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga3d2abfcb995fd2db908c8288199dba82
//
func GetTextSize(text string, fontFace HersheyFont, fontScale float64, thickness int) image.Point {
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
sz := C.GetTextSize(cText, C.int(fontFace), C.double(fontScale), C.int(thickness))
return image.Pt(int(sz.width), int(sz.height))
}
// GetTextSizeWithBaseline calculates the width and height of a text string including the basline of the text.
// It returns an image.Point with the size required to draw text using
// a specific font face, scale, and thickness as well as its baseline.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga3d2abfcb995fd2db908c8288199dba82
//
func GetTextSizeWithBaseline(text string, fontFace HersheyFont, fontScale float64, thickness int) (image.Point, int) {
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
cBaseline := C.int(0)
sz := C.GetTextSizeWithBaseline(cText, C.int(fontFace), C.double(fontScale), C.int(thickness), &cBaseline)
return image.Pt(int(sz.width), int(sz.height)), int(cBaseline)
}
// PutText draws a text string.
// It renders the specified text string into the img Mat at the location
// passed in the "org" param, using the desired font face, font scale,
// color, and line thinkness.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga5126f47f883d730f633d74f07456c576
//
func PutText(img *Mat, text string, org image.Point, fontFace HersheyFont, fontScale float64, c color.RGBA, thickness int) {
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
pOrg := C.struct_Point{
x: C.int(org.X),
y: C.int(org.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.PutText(img.p, cText, pOrg, C.int(fontFace), C.double(fontScale), sColor, C.int(thickness))
return
}
// PutTextWithParams draws a text string.
// It renders the specified text string into the img Mat at the location
// passed in the "org" param, using the desired font face, font scale,
// color, and line thinkness.
//
// For further details, please see:
// http://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga5126f47f883d730f633d74f07456c576
//
func PutTextWithParams(img *Mat, text string, org image.Point, fontFace HersheyFont, fontScale float64, c color.RGBA, thickness int, lineType LineType, bottomLeftOrigin bool) {
cText := C.CString(text)
defer C.free(unsafe.Pointer(cText))
pOrg := C.struct_Point{
x: C.int(org.X),
y: C.int(org.Y),
}
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.PutTextWithParams(img.p, cText, pOrg, C.int(fontFace), C.double(fontScale), sColor, C.int(thickness), C.int(lineType), C.bool(bottomLeftOrigin))
return
}
// InterpolationFlags are bit flags that control the interpolation algorithm
// that is used.
type InterpolationFlags int
const (
// InterpolationNearestNeighbor is nearest neighbor. (fast but low quality)
InterpolationNearestNeighbor InterpolationFlags = 0
// InterpolationLinear is bilinear interpolation.
InterpolationLinear InterpolationFlags = 1
// InterpolationCubic is bicube interpolation.
InterpolationCubic InterpolationFlags = 2
// InterpolationArea uses pixel area relation. It is preferred for image
// decimation as it gives moire-free results.
InterpolationArea InterpolationFlags = 3
// InterpolationLanczos4 is Lanczos interpolation over 8x8 neighborhood.
InterpolationLanczos4 InterpolationFlags = 4
// InterpolationDefault is an alias for InterpolationLinear.
InterpolationDefault = InterpolationLinear
// InterpolationMax indicates use maximum interpolation.
InterpolationMax InterpolationFlags = 7
// WarpFillOutliers fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero.
WarpFillOutliers = 8
// WarpInverseMap, inverse transformation.
WarpInverseMap = 16
)
// Resize resizes an image.
// It resizes the image src down to or up to the specified size, storing the
// result in dst. Note that src and dst may be the same image. If you wish to
// scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise,
// if you wish to scale to an explicit size, a non-empty sz may be passed with
// zero for both fx and fy.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
func Resize(src Mat, dst *Mat, sz image.Point, fx, fy float64, interp InterpolationFlags) {
pSize := C.struct_Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
C.Resize(src.p, dst.p, pSize, C.double(fx), C.double(fy), C.int(interp))
return
}
// GetRectSubPix retrieves a pixel rectangle from an image with sub-pixel accuracy.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga77576d06075c1a4b6ba1a608850cd614
func GetRectSubPix(src Mat, patchSize image.Point, center image.Point, dst *Mat) {
sz := C.struct_Size{
width: C.int(patchSize.X),
height: C.int(patchSize.Y),
}
pt := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
C.GetRectSubPix(src.p, sz, pt, dst.p)
}
// GetRotationMatrix2D calculates an affine matrix of 2D rotation.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gafbbc470ce83812914a70abfb604f4326
func GetRotationMatrix2D(center image.Point, angle, scale float64) Mat {
pc := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
return newMat(C.GetRotationMatrix2D(pc, C.double(angle), C.double(scale)))
}
// WarpAffine applies an affine transformation to an image. For more parameters please check WarpAffineWithParams
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983
func WarpAffine(src Mat, dst *Mat, m Mat, sz image.Point) {
pSize := C.struct_Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
C.WarpAffine(src.p, dst.p, m.p, pSize)
}
// WarpAffineWithParams applies an affine transformation to an image.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983
func WarpAffineWithParams(src Mat, dst *Mat, m Mat, sz image.Point, flags InterpolationFlags, borderType BorderType, borderValue color.RGBA) {
pSize := C.struct_Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
bv := C.struct_Scalar{
val1: C.double(borderValue.B),
val2: C.double(borderValue.G),
val3: C.double(borderValue.R),
val4: C.double(borderValue.A),
}
C.WarpAffineWithParams(src.p, dst.p, m.p, pSize, C.int(flags), C.int(borderType), bv)
}
// WarpPerspective applies a perspective transformation to an image.
// For more parameters please check WarpPerspectiveWithParams.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87
func WarpPerspective(src Mat, dst *Mat, m Mat, sz image.Point) {
pSize := C.struct_Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
C.WarpPerspective(src.p, dst.p, m.p, pSize)
}
// WarpPerspectiveWithParams applies a perspective transformation to an image.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87
func WarpPerspectiveWithParams(src Mat, dst *Mat, m Mat, sz image.Point, flags InterpolationFlags, borderType BorderType, borderValue color.RGBA) {
pSize := C.struct_Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
bv := C.struct_Scalar{
val1: C.double(borderValue.B),
val2: C.double(borderValue.G),
val3: C.double(borderValue.R),
val4: C.double(borderValue.A),
}
C.WarpPerspectiveWithParams(src.p, dst.p, m.p, pSize, C.int(flags), C.int(borderType), bv)
}
// Watershed performs a marker-based image segmentation using the watershed algorithm.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga3267243e4d3f95165d55a618c65ac6e1
func Watershed(image Mat, markers *Mat) {
C.Watershed(image.p, markers.p)
}
// ColormapTypes are the 12 GNU Octave/MATLAB equivalent colormaps.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html
type ColormapTypes int
// List of the available color maps
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#ga9a805d8262bcbe273f16be9ea2055a65
const (
ColormapAutumn ColormapTypes = 0
ColormapBone ColormapTypes = 1
ColormapJet ColormapTypes = 2
ColormapWinter ColormapTypes = 3
ColormapRainbow ColormapTypes = 4
ColormapOcean ColormapTypes = 5
ColormapSummer ColormapTypes = 6
ColormapSpring ColormapTypes = 7
ColormapCool ColormapTypes = 8
ColormapHsv ColormapTypes = 9
ColormapPink ColormapTypes = 10
ColormapHot ColormapTypes = 11
ColormapParula ColormapTypes = 12
)
// ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
func ApplyColorMap(src Mat, dst *Mat, colormapType ColormapTypes) {
C.ApplyColorMap(src.p, dst.p, C.int(colormapType))
}
// ApplyCustomColorMap applies a custom defined colormap on a given image.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gacb22288ddccc55f9bd9e6d492b409cae
func ApplyCustomColorMap(src Mat, dst *Mat, customColormap Mat) {
C.ApplyCustomColorMap(src.p, dst.p, customColormap.p)
}
// GetPerspectiveTransform returns 3x3 perspective transformation for the
// corresponding 4 point pairs as image.Point.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8c1ae0e3589a9d77fffc962c49b22043
func GetPerspectiveTransform(src, dst PointVector) Mat {
return newMat(C.GetPerspectiveTransform(src.p, dst.p))
}
// GetPerspectiveTransform2f returns 3x3 perspective transformation for the
// corresponding 4 point pairs as gocv.Point2f.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8c1ae0e3589a9d77fffc962c49b22043
func GetPerspectiveTransform2f(src, dst Point2fVector) Mat {
return newMat(C.GetPerspectiveTransform2f(src.p, dst.p))
}
// GetAffineTransform returns a 2x3 affine transformation matrix for the
// corresponding 3 point pairs as image.Point.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8f6d378f9f8eebb5cb55cd3ae295a999
func GetAffineTransform(src, dst PointVector) Mat {
return newMat(C.GetAffineTransform(src.p, dst.p))
}
// GetAffineTransform2f returns a 2x3 affine transformation matrix for the
// corresponding 3 point pairs as gocv.Point2f.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga8f6d378f9f8eebb5cb55cd3ae295a999
func GetAffineTransform2f(src, dst Point2fVector) Mat {
return newMat(C.GetAffineTransform2f(src.p, dst.p))
}
type HomographyMethod int
const (
HomograpyMethodAllPoints HomographyMethod = 0
HomograpyMethodLMEDS HomographyMethod = 4
HomograpyMethodRANSAC HomographyMethod = 8
)
// FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
//
// For further details, please see:
// https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga4abc2ece9fab9398f2e560d53c8c9780
//
func FindHomography(srcPoints Mat, dstPoints *Mat, method HomographyMethod, ransacReprojThreshold float64, mask *Mat, maxIters int, confidence float64) Mat {
return newMat(C.FindHomography(srcPoints.Ptr(), dstPoints.Ptr(), C.int(method), C.double(ransacReprojThreshold), mask.Ptr(), C.int(maxIters), C.double(confidence)))
}
// DrawContours draws contours outlines or filled contours.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
//
func DrawContours(img *Mat, contours PointsVector, contourIdx int, c color.RGBA, thickness int) {
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
C.DrawContours(img.p, contours.p, C.int(contourIdx), sColor, C.int(thickness))
}
// DrawContoursWithParams draws contours outlines or filled contours.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#ga746c0625f1781f1ffc9056259103edbc
//
func DrawContoursWithParams(img *Mat, contours PointsVector, contourIdx int, c color.RGBA, thickness int, lineType LineType, hierarchy Mat, maxLevel int, offset image.Point) {
sColor := C.struct_Scalar{
val1: C.double(c.B),
val2: C.double(c.G),
val3: C.double(c.R),
val4: C.double(c.A),
}
offsetP := C.struct_Point{
x: C.int(offset.X),
y: C.int(offset.Y),
}
C.DrawContoursWithParams(img.p, contours.p, C.int(contourIdx), sColor, C.int(thickness), C.int(lineType), hierarchy.p, C.int(maxLevel), offsetP)
}
// Remap applies a generic geometrical transformation to an image.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4
func Remap(src Mat, dst, map1, map2 *Mat, interpolation InterpolationFlags, borderMode BorderType, borderValue color.RGBA) {
bv := C.struct_Scalar{
val1: C.double(borderValue.B),
val2: C.double(borderValue.G),
val3: C.double(borderValue.R),
val4: C.double(borderValue.A),
}
C.Remap(src.p, dst.p, map1.p, map2.p, C.int(interpolation), C.int(borderMode), bv)
}
// Filter2D applies an arbitrary linear filter to an image.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
func Filter2D(src Mat, dst *Mat, ddepth MatType, kernel Mat, anchor image.Point, delta float64, borderType BorderType) {
anchorP := C.struct_Point{
x: C.int(anchor.X),
y: C.int(anchor.Y),
}
C.Filter2D(src.p, dst.p, C.int(ddepth), kernel.p, anchorP, C.double(delta), C.int(borderType))
}
// SepFilter2D applies a separable linear filter to the image.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d86/group__imgproc__filter.html#ga910e29ff7d7b105057d1625a4bf6318d
func SepFilter2D(src Mat, dst *Mat, ddepth MatType, kernelX, kernelY Mat, anchor image.Point, delta float64, borderType BorderType) {
anchorP := C.struct_Point{
x: C.int(anchor.X),
y: C.int(anchor.Y),
}
C.SepFilter2D(src.p, dst.p, C.int(ddepth), kernelX.p, kernelY.p, anchorP, C.double(delta), C.int(borderType))
}
// LogPolar remaps an image to semilog-polar coordinates space.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaec3a0b126a85b5ca2c667b16e0ae022d
func LogPolar(src Mat, dst *Mat, center image.Point, m float64, flags InterpolationFlags) {
centerP := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
C.LogPolar(src.p, dst.p, centerP, C.double(m), C.int(flags))
}
// LinearPolar remaps an image to polar coordinates space.
//
// For further details, please see:
// https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#gaa38a6884ac8b6e0b9bed47939b5362f3
func LinearPolar(src Mat, dst *Mat, center image.Point, maxRadius float64, flags InterpolationFlags) {
centerP := C.struct_Point{
x: C.int(center.X),
y: C.int(center.Y),
}
C.LinearPolar(src.p, dst.p, centerP, C.double(maxRadius), C.int(flags))
}
// DistanceTypes types for Distance Transform and M-estimatorss
//
// For further details, please see:
// https://docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#gaa2bfbebbc5c320526897996aafa1d8eb
type DistanceTypes int
const (
DistUser DistanceTypes = 0
DistL1 DistanceTypes = 1
DistL2 DistanceTypes = 2
DistC DistanceTypes = 3
DistL12 DistanceTypes = 4
DistFair DistanceTypes = 5
DistWelsch DistanceTypes = 6
DistHuber DistanceTypes = 7
)
// FitLine fits a line to a 2D or 3D point set.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
func FitLine(pts PointVector, line *Mat, distType DistanceTypes, param, reps, aeps float64) {
C.FitLine(pts.p, line.p, C.int(distType), C.double(param), C.double(reps), C.double(aeps))
}
// CLAHE is a wrapper around the cv::CLAHE algorithm.
type CLAHE struct {
// C.CLAHE
p unsafe.Pointer
}
// NewCLAHE returns a new CLAHE algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html
//
func NewCLAHE() CLAHE {
return CLAHE{p: unsafe.Pointer(C.CLAHE_Create())}
}
// NewCLAHEWithParams returns a new CLAHE algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html
//
func NewCLAHEWithParams(clipLimit float64, tileGridSize image.Point) CLAHE {
pSize := C.struct_Size{
width: C.int(tileGridSize.X),
height: C.int(tileGridSize.Y),
}
return CLAHE{p: unsafe.Pointer(C.CLAHE_CreateWithParams(C.double(clipLimit), pSize))}
}
// Close CLAHE.
func (c *CLAHE) Close() error {
C.CLAHE_Close((C.CLAHE)(c.p))
c.p = nil
return nil
}
// Apply CLAHE.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/db6/classcv_1_1CLAHE.html#a4e92e0e427de21be8d1fae8dcd862c5e
//
func (c *CLAHE) Apply(src Mat, dst *Mat) {
C.CLAHE_Apply((C.CLAHE)(c.p), src.p, dst.p)
}
func InvertAffineTransform(src Mat, dst *Mat) {
C.InvertAffineTransform(src.p, dst.p)
}
// Apply phaseCorrelate.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga552420a2ace9ef3fb053cd630fdb4952
//
func PhaseCorrelate(src1, src2, window Mat) (phaseShift Point2f, response float64) {
var responseDouble C.double
result := C.PhaseCorrelate(src1.p, src2.p, window.p, &responseDouble)
return Point2f{
X: float32(result.x),
Y: float32(result.y),
}, float64(responseDouble)
}
// ToImage converts a Mat to a image.Image.
func (m *Mat) ToImage() (image.Image, error) {
switch m.Type() {
case MatTypeCV8UC1:
img := image.NewGray(image.Rect(0, 0, m.Cols(), m.Rows()))
data, err := m.DataPtrUint8()
if err != nil {
return nil, err
}
copy(img.Pix, data[0:])
return img, nil
case MatTypeCV8UC3:
dst := NewMat()
defer dst.Close()
C.CvtColor(m.p, dst.p, C.int(ColorBGRToRGBA))
img := image.NewRGBA(image.Rect(0, 0, m.Cols(), m.Rows()))
data, err := dst.DataPtrUint8()
if err != nil {
return nil, err
}
copy(img.Pix, data[0:])
return img, nil
case MatTypeCV8UC4:
dst := NewMat()
defer dst.Close()
C.CvtColor(m.p, dst.p, C.int(ColorBGRAToRGBA))
img := image.NewNRGBA(image.Rect(0, 0, m.Cols(), m.Rows()))
data, err := dst.DataPtrUint8()
if err != nil {
return nil, err
}
copy(img.Pix, data[0:])
return img, nil
default:
return nil, errors.New("ToImage supports only MatType CV8UC1, CV8UC3 and CV8UC4")
}
}
// ToImageYUV converts a Mat to a image.YCbCr using image.YCbCrSubsampleRatio420 as default subsampling param.
func (m *Mat) ToImageYUV() (*image.YCbCr, error) {
img, err := m.ToImage()
if err != nil {
return nil, err
}
bounds := img.Bounds()
converted := image.NewYCbCr(bounds, image.YCbCrSubsampleRatio420)
for row := 0; row < bounds.Max.Y; row++ {
for col := 0; col < bounds.Max.X; col++ {
r, g, b, _ := img.At(col, row).RGBA()
y, cb, cr := color.RGBToYCbCr(uint8(r), uint8(g), uint8(b))
converted.Y[converted.YOffset(col, row)] = y
converted.Cb[converted.COffset(col, row)] = cb
converted.Cr[converted.COffset(col, row)] = cr
}
}
return converted, nil
}
// ToImageYUV converts a Mat to a image.YCbCr using provided YUV subsample ratio param.
func (m *Mat) ToImageYUVWithParams(ratio image.YCbCrSubsampleRatio) (*image.YCbCr, error) {
img, err := m.ToImage()
if err != nil {
return nil, err
}
bounds := img.Bounds()
converted := image.NewYCbCr(bounds, ratio)
for row := 0; row < bounds.Max.Y; row++ {
for col := 0; col < bounds.Max.X; col++ {
r, g, b, _ := img.At(col, row).RGBA()
y, cb, cr := color.RGBToYCbCr(uint8(r), uint8(g), uint8(b))
converted.Y[converted.YOffset(col, row)] = y
converted.Cb[converted.COffset(col, row)] = cb
converted.Cr[converted.COffset(col, row)] = cr
}
}
return converted, nil
}
// ImageToMatRGBA converts image.Image to gocv.Mat,
// which represents RGBA image having 8bit for each component.
// Type of Mat is gocv.MatTypeCV8UC4.
func ImageToMatRGBA(img image.Image) (Mat, error) {
bounds := img.Bounds()
x := bounds.Dx()
y := bounds.Dy()
var data []uint8
switch img.ColorModel() {
case color.RGBAModel:
m, res := img.(*image.RGBA)
if !res {
return NewMat(), errors.New("Image color format error")
}
data = m.Pix
case color.NRGBAModel:
m, res := img.(*image.NRGBA)
if !res {
return NewMat(), errors.New("Image color format error")
}
data = m.Pix
default:
data := make([]byte, 0, x*y*3)
for j := bounds.Min.Y; j < bounds.Max.Y; j++ {
for i := bounds.Min.X; i < bounds.Max.X; i++ {
r, g, b, _ := img.At(i, j).RGBA()
data = append(data, byte(b>>8), byte(g>>8), byte(r>>8))
}
}
return NewMatFromBytes(y, x, MatTypeCV8UC3, data)
}
// speed up the conversion process of RGBA format
cvt, err := NewMatFromBytes(y, x, MatTypeCV8UC4, data)
if err != nil {
return NewMat(), err
}
defer cvt.Close()
dst := NewMat()
C.CvtColor(cvt.p, dst.p, C.int(ColorBGRAToRGBA))
return dst, nil
}
// ImageToMatRGB converts image.Image to gocv.Mat,
// which represents RGB image having 8bit for each component.
// Type of Mat is gocv.MatTypeCV8UC3.
func ImageToMatRGB(img image.Image) (Mat, error) {
bounds := img.Bounds()
x := bounds.Dx()
y := bounds.Dy()
var data []uint8
switch img.ColorModel() {
case color.RGBAModel:
m, res := img.(*image.RGBA)
if true != res {
return NewMat(), errors.New("Image color format error")
}
data = m.Pix
// speed up the conversion process of RGBA format
src, err := NewMatFromBytes(y, x, MatTypeCV8UC4, data)
if err != nil {
return NewMat(), err
}
defer src.Close()
dst := NewMat()
CvtColor(src, &dst, ColorRGBAToBGR)
return dst, nil
default:
data := make([]byte, 0, x*y*3)
for j := bounds.Min.Y; j < bounds.Max.Y; j++ {
for i := bounds.Min.X; i < bounds.Max.X; i++ {
r, g, b, _ := img.At(i, j).RGBA()
data = append(data, byte(b>>8), byte(g>>8), byte(r>>8))
}
}
return NewMatFromBytes(y, x, MatTypeCV8UC3, data)
}
}
// ImageGrayToMatGray converts image.Gray to gocv.Mat,
// which represents grayscale image 8bit.
// Type of Mat is gocv.MatTypeCV8UC1.
func ImageGrayToMatGray(img *image.Gray) (Mat, error) {
bounds := img.Bounds()
x := bounds.Dx()
y := bounds.Dy()
m, err := NewMatFromBytes(y, x, MatTypeCV8UC1, img.Pix)
if err != nil {
return NewMat(), err
}
return m, nil
}
// Adds the square of a source image to the accumulator image.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga1a567a79901513811ff3b9976923b199
//
func Accumulate(src Mat, dst *Mat) {
C.Mat_Accumulate(src.p, dst.p)
}
// Adds an image to the accumulator image with mask.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga1a567a79901513811ff3b9976923b199
//
func AccumulateWithMask(src Mat, dst *Mat, mask Mat) {
C.Mat_AccumulateWithMask(src.p, dst.p, mask.p)
}
// Adds the square of a source image to the accumulator image.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#gacb75e7ffb573227088cef9ceaf80be8c
//
func AccumulateSquare(src Mat, dst *Mat) {
C.Mat_AccumulateSquare(src.p, dst.p)
}
// Adds the square of a source image to the accumulator image with mask.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#gacb75e7ffb573227088cef9ceaf80be8c
//
func AccumulateSquareWithMask(src Mat, dst *Mat, mask Mat) {
C.Mat_AccumulateSquareWithMask(src.p, dst.p, mask.p)
}
// Adds the per-element product of two input images to the accumulator image.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga82518a940ecfda49460f66117ac82520
//
func AccumulateProduct(src1 Mat, src2 Mat, dst *Mat) {
C.Mat_AccumulateProduct(src1.p, src2.p, dst.p)
}
// Adds the per-element product of two input images to the accumulator image with mask.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga82518a940ecfda49460f66117ac82520
//
func AccumulateProductWithMask(src1 Mat, src2 Mat, dst *Mat, mask Mat) {
C.Mat_AccumulateProductWithMask(src1.p, src2.p, dst.p, mask.p)
}
// Updates a running average.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga4f9552b541187f61f6818e8d2d826bc7
//
func AccumulatedWeighted(src Mat, dst *Mat, alpha float64) {
C.Mat_AccumulatedWeighted(src.p, dst.p, C.double(alpha))
}
// Updates a running average with mask.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df3/group__imgproc__motion.html#ga4f9552b541187f61f6818e8d2d826bc7
//
func AccumulatedWeightedWithMask(src Mat, dst *Mat, alpha float64, mask Mat) {
C.Mat_AccumulatedWeightedWithMask(src.p, dst.p, C.double(alpha), mask.p)
}