feat(train): add new command to interact with aws and train models

This commit is contained in:
2021-10-17 19:15:44 +02:00
parent 5436dfebc2
commit 538cea18f2
1064 changed files with 282251 additions and 89305 deletions

View File

@ -0,0 +1,183 @@
package endpoints
import (
"fmt"
"regexp"
"strings"
"github.com/aws/aws-sdk-go-v2/aws"
)
const (
defaultProtocol = "https"
defaultSigner = "v4"
)
var (
protocolPriority = []string{"https", "http"}
signerPriority = []string{"v4"}
)
// Options provide configuration needed to direct how endpoints are resolved.
type Options struct {
// Disable usage of HTTPS (TLS / SSL)
DisableHTTPS bool
}
// Partitions is a slice of partition
type Partitions []Partition
// ResolveEndpoint resolves a service endpoint for the given region and options.
func (ps Partitions) ResolveEndpoint(region string, opts Options) (aws.Endpoint, error) {
if len(ps) == 0 {
return aws.Endpoint{}, fmt.Errorf("no partitions found")
}
for i := 0; i < len(ps); i++ {
if !ps[i].canResolveEndpoint(region) {
continue
}
return ps[i].ResolveEndpoint(region, opts)
}
// fallback to first partition format to use when resolving the endpoint.
return ps[0].ResolveEndpoint(region, opts)
}
// Partition is an AWS partition description for a service and its' region endpoints.
type Partition struct {
ID string
RegionRegex *regexp.Regexp
PartitionEndpoint string
IsRegionalized bool
Defaults Endpoint
Endpoints Endpoints
}
func (p Partition) canResolveEndpoint(region string) bool {
_, ok := p.Endpoints[region]
return ok || p.RegionRegex.MatchString(region)
}
// ResolveEndpoint resolves and service endpoint for the given region and options.
func (p Partition) ResolveEndpoint(region string, options Options) (resolved aws.Endpoint, err error) {
if len(region) == 0 && len(p.PartitionEndpoint) != 0 {
region = p.PartitionEndpoint
}
e, _ := p.endpointForRegion(region)
return e.resolve(p.ID, region, p.Defaults, options), nil
}
func (p Partition) endpointForRegion(region string) (Endpoint, bool) {
if e, ok := p.Endpoints[region]; ok {
return e, true
}
if !p.IsRegionalized {
return p.Endpoints[p.PartitionEndpoint], region == p.PartitionEndpoint
}
// Unable to find any matching endpoint, return
// blank that will be used for generic endpoint creation.
return Endpoint{}, false
}
// Endpoints is a map of service config regions to endpoints
type Endpoints map[string]Endpoint
// CredentialScope is the credential scope of a region and service
type CredentialScope struct {
Region string
Service string
}
// Endpoint is a service endpoint description
type Endpoint struct {
// True if the endpoint cannot be resolved for this partition/region/service
Unresolveable aws.Ternary
Hostname string
Protocols []string
CredentialScope CredentialScope
SignatureVersions []string `json:"signatureVersions"`
}
func (e Endpoint) resolve(partition, region string, def Endpoint, options Options) aws.Endpoint {
var merged Endpoint
merged.mergeIn(def)
merged.mergeIn(e)
e = merged
var u string
if e.Unresolveable != aws.TrueTernary {
// Only attempt to resolve the endpoint if it can be resolved.
hostname := strings.Replace(e.Hostname, "{region}", region, 1)
scheme := getEndpointScheme(e.Protocols, options.DisableHTTPS)
u = scheme + "://" + hostname
}
signingRegion := e.CredentialScope.Region
if len(signingRegion) == 0 {
signingRegion = region
}
signingName := e.CredentialScope.Service
return aws.Endpoint{
URL: u,
PartitionID: partition,
SigningRegion: signingRegion,
SigningName: signingName,
SigningMethod: getByPriority(e.SignatureVersions, signerPriority, defaultSigner),
}
}
func (e *Endpoint) mergeIn(other Endpoint) {
if other.Unresolveable != aws.UnknownTernary {
e.Unresolveable = other.Unresolveable
}
if len(other.Hostname) > 0 {
e.Hostname = other.Hostname
}
if len(other.Protocols) > 0 {
e.Protocols = other.Protocols
}
if len(other.CredentialScope.Region) > 0 {
e.CredentialScope.Region = other.CredentialScope.Region
}
if len(other.CredentialScope.Service) > 0 {
e.CredentialScope.Service = other.CredentialScope.Service
}
if len(other.SignatureVersions) > 0 {
e.SignatureVersions = other.SignatureVersions
}
}
func getEndpointScheme(protocols []string, disableHTTPS bool) string {
if disableHTTPS {
return "http"
}
return getByPriority(protocols, protocolPriority, defaultProtocol)
}
func getByPriority(s []string, p []string, def string) string {
if len(s) == 0 {
return def
}
for i := 0; i < len(p); i++ {
for j := 0; j < len(s); j++ {
if s[j] == p[i] {
return s[j]
}
}
}
return s[0]
}

View File

@ -0,0 +1,34 @@
# v1.2.3 (2021-09-17)
* **Dependency Update**: Updated to the latest SDK module versions
# v1.2.2 (2021-08-27)
* **Dependency Update**: Updated to the latest SDK module versions
# v1.2.1 (2021-08-19)
* **Dependency Update**: Updated to the latest SDK module versions
# v1.2.0 (2021-08-04)
* **Feature**: adds error handling for defered close calls
* **Dependency Update**: Updated to the latest SDK module versions
# v1.1.1 (2021-07-15)
* **Dependency Update**: Updated to the latest SDK module versions
# v1.1.0 (2021-07-01)
* **Feature**: Support for `:`, `=`, `[`, `]` being present in expression values.
# v1.0.1 (2021-06-25)
* **Dependency Update**: Updated to the latest SDK module versions
# v1.0.0 (2021-05-20)
* **Release**: The `github.com/aws/aws-sdk-go-v2/internal/ini` package is now a Go Module.
* **Dependency Update**: Updated to the latest SDK module versions

View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

120
vendor/github.com/aws/aws-sdk-go-v2/internal/ini/ast.go generated vendored Normal file
View File

@ -0,0 +1,120 @@
package ini
// ASTKind represents different states in the parse table
// and the type of AST that is being constructed
type ASTKind int
// ASTKind* is used in the parse table to transition between
// the different states
const (
ASTKindNone = ASTKind(iota)
ASTKindStart
ASTKindExpr
ASTKindEqualExpr
ASTKindStatement
ASTKindSkipStatement
ASTKindExprStatement
ASTKindSectionStatement
ASTKindNestedSectionStatement
ASTKindCompletedNestedSectionStatement
ASTKindCommentStatement
ASTKindCompletedSectionStatement
)
func (k ASTKind) String() string {
switch k {
case ASTKindNone:
return "none"
case ASTKindStart:
return "start"
case ASTKindExpr:
return "expr"
case ASTKindStatement:
return "stmt"
case ASTKindSectionStatement:
return "section_stmt"
case ASTKindExprStatement:
return "expr_stmt"
case ASTKindCommentStatement:
return "comment"
case ASTKindNestedSectionStatement:
return "nested_section_stmt"
case ASTKindCompletedSectionStatement:
return "completed_stmt"
case ASTKindSkipStatement:
return "skip"
default:
return ""
}
}
// AST interface allows us to determine what kind of node we
// are on and casting may not need to be necessary.
//
// The root is always the first node in Children
type AST struct {
Kind ASTKind
Root Token
RootToken bool
Children []AST
}
func newAST(kind ASTKind, root AST, children ...AST) AST {
return AST{
Kind: kind,
Children: append([]AST{root}, children...),
}
}
func newASTWithRootToken(kind ASTKind, root Token, children ...AST) AST {
return AST{
Kind: kind,
Root: root,
RootToken: true,
Children: children,
}
}
// AppendChild will append to the list of children an AST has.
func (a *AST) AppendChild(child AST) {
a.Children = append(a.Children, child)
}
// GetRoot will return the root AST which can be the first entry
// in the children list or a token.
func (a *AST) GetRoot() AST {
if a.RootToken {
return *a
}
if len(a.Children) == 0 {
return AST{}
}
return a.Children[0]
}
// GetChildren will return the current AST's list of children
func (a *AST) GetChildren() []AST {
if len(a.Children) == 0 {
return []AST{}
}
if a.RootToken {
return a.Children
}
return a.Children[1:]
}
// SetChildren will set and override all children of the AST.
func (a *AST) SetChildren(children []AST) {
if a.RootToken {
a.Children = children
} else {
a.Children = append(a.Children[:1], children...)
}
}
// Start is used to indicate the starting state of the parse table.
var Start = newAST(ASTKindStart, AST{})

View File

@ -0,0 +1,11 @@
package ini
var commaRunes = []rune(",")
func isComma(b rune) bool {
return b == ','
}
func newCommaToken() Token {
return newToken(TokenComma, commaRunes, NoneType)
}

View File

@ -0,0 +1,35 @@
package ini
// isComment will return whether or not the next byte(s) is a
// comment.
func isComment(b []rune) bool {
if len(b) == 0 {
return false
}
switch b[0] {
case ';':
return true
case '#':
return true
}
return false
}
// newCommentToken will create a comment token and
// return how many bytes were read.
func newCommentToken(b []rune) (Token, int, error) {
i := 0
for ; i < len(b); i++ {
if b[i] == '\n' {
break
}
if len(b)-i > 2 && b[i] == '\r' && b[i+1] == '\n' {
break
}
}
return newToken(TokenComment, b[:i], NoneType), i, nil
}

View File

@ -0,0 +1,6 @@
package ini
import (
// internal/ini module was carved out of this module
_ "github.com/aws/aws-sdk-go-v2"
)

View File

@ -0,0 +1,42 @@
// Package ini is an LL(1) parser for configuration files.
//
// Example:
// sections, err := ini.OpenFile("/path/to/file")
// if err != nil {
// panic(err)
// }
//
// profile := "foo"
// section, ok := sections.GetSection(profile)
// if !ok {
// fmt.Printf("section %q could not be found", profile)
// }
//
// Below is the BNF that describes this parser
// Grammar:
// stmt -> section | stmt'
// stmt' -> epsilon | expr
// expr -> value (stmt)* | equal_expr (stmt)*
// equal_expr -> value ( ':' | '=' ) equal_expr'
// equal_expr' -> number | string | quoted_string
// quoted_string -> " quoted_string'
// quoted_string' -> string quoted_string_end
// quoted_string_end -> "
//
// section -> [ section'
// section' -> section_value section_close
// section_value -> number | string_subset | boolean | quoted_string_subset
// quoted_string_subset -> " quoted_string_subset'
// quoted_string_subset' -> string_subset quoted_string_end
// quoted_string_subset -> "
// section_close -> ]
//
// value -> number | string_subset | boolean
// string -> ? UTF-8 Code-Points except '\n' (U+000A) and '\r\n' (U+000D U+000A) ?
// string_subset -> ? Code-points excepted by <string> grammar except ':' (U+003A), '=' (U+003D), '[' (U+005B), and ']' (U+005D) ?
//
// SkipState will skip (NL WS)+
//
// comment -> # comment' | ; comment'
// comment' -> epsilon | value
package ini

View File

@ -0,0 +1,4 @@
package ini
// emptyToken is used to satisfy the Token interface
var emptyToken = newToken(TokenNone, []rune{}, NoneType)

View File

@ -0,0 +1,22 @@
package ini
import "fmt"
// UnableToReadFile is an error indicating that a ini file could not be read
type UnableToReadFile struct {
Err error
}
// Error returns an error message and the underlying error message if present
func (e *UnableToReadFile) Error() string {
base := "unable to read file"
if e.Err == nil {
return base
}
return fmt.Sprintf("%s: %v", base, e.Err)
}
// Unwrap returns the underlying error
func (e *UnableToReadFile) Unwrap() error {
return e.Err
}

View File

@ -0,0 +1,24 @@
package ini
// newExpression will return an expression AST.
// Expr represents an expression
//
// grammar:
// expr -> string | number
func newExpression(tok Token) AST {
return newASTWithRootToken(ASTKindExpr, tok)
}
func newEqualExpr(left AST, tok Token) AST {
return newASTWithRootToken(ASTKindEqualExpr, tok, left)
}
// EqualExprKey will return a LHS value in the equal expr
func EqualExprKey(ast AST) string {
children := ast.GetChildren()
if len(children) == 0 || ast.Kind != ASTKindEqualExpr {
return ""
}
return string(children[0].Root.Raw())
}

View File

@ -0,0 +1,18 @@
//go:build gofuzz
// +build gofuzz
package ini
import (
"bytes"
)
func Fuzz(data []byte) int {
b := bytes.NewReader(data)
if _, err := Parse(b); err != nil {
return 0
}
return 1
}

View File

@ -0,0 +1,6 @@
// Code generated by internal/repotools/cmd/updatemodulemeta DO NOT EDIT.
package ini
// goModuleVersion is the tagged release for this module
const goModuleVersion = "1.2.3"

View File

@ -0,0 +1,58 @@
package ini
import (
"fmt"
"io"
"os"
)
// OpenFile takes a path to a given file, and will open and parse
// that file.
func OpenFile(path string) (sections Sections, err error) {
f, oerr := os.Open(path)
if oerr != nil {
return Sections{}, &UnableToReadFile{Err: oerr}
}
defer func() {
closeErr := f.Close()
if err == nil {
err = closeErr
} else if closeErr != nil {
err = fmt.Errorf("close error: %v, original error: %w", closeErr, err)
}
}()
return Parse(f, path)
}
// Parse will parse the given file using the shared config
// visitor.
func Parse(f io.Reader, path string) (Sections, error) {
tree, err := ParseAST(f)
if err != nil {
return Sections{}, err
}
v := NewDefaultVisitor(path)
if err = Walk(tree, v); err != nil {
return Sections{}, err
}
return v.Sections, nil
}
// ParseBytes will parse the given bytes and return the parsed sections.
func ParseBytes(b []byte) (Sections, error) {
tree, err := ParseASTBytes(b)
if err != nil {
return Sections{}, err
}
v := NewDefaultVisitor("")
if err = Walk(tree, v); err != nil {
return Sections{}, err
}
return v.Sections, nil
}

View File

@ -0,0 +1,157 @@
package ini
import (
"bytes"
"io"
"io/ioutil"
)
// TokenType represents the various different tokens types
type TokenType int
func (t TokenType) String() string {
switch t {
case TokenNone:
return "none"
case TokenLit:
return "literal"
case TokenSep:
return "sep"
case TokenOp:
return "op"
case TokenWS:
return "ws"
case TokenNL:
return "newline"
case TokenComment:
return "comment"
case TokenComma:
return "comma"
default:
return ""
}
}
// TokenType enums
const (
TokenNone = TokenType(iota)
TokenLit
TokenSep
TokenComma
TokenOp
TokenWS
TokenNL
TokenComment
)
type iniLexer struct{}
// Tokenize will return a list of tokens during lexical analysis of the
// io.Reader.
func (l *iniLexer) Tokenize(r io.Reader) ([]Token, error) {
b, err := ioutil.ReadAll(r)
if err != nil {
return nil, &UnableToReadFile{Err: err}
}
return l.tokenize(b)
}
func (l *iniLexer) tokenize(b []byte) ([]Token, error) {
runes := bytes.Runes(b)
var err error
n := 0
tokenAmount := countTokens(runes)
tokens := make([]Token, tokenAmount)
count := 0
for len(runes) > 0 && count < tokenAmount {
switch {
case isWhitespace(runes[0]):
tokens[count], n, err = newWSToken(runes)
case isComma(runes[0]):
tokens[count], n = newCommaToken(), 1
case isComment(runes):
tokens[count], n, err = newCommentToken(runes)
case isNewline(runes):
tokens[count], n, err = newNewlineToken(runes)
case isSep(runes):
tokens[count], n, err = newSepToken(runes)
case isOp(runes):
tokens[count], n, err = newOpToken(runes)
default:
tokens[count], n, err = newLitToken(runes)
}
if err != nil {
return nil, err
}
count++
runes = runes[n:]
}
return tokens[:count], nil
}
func countTokens(runes []rune) int {
count, n := 0, 0
var err error
for len(runes) > 0 {
switch {
case isWhitespace(runes[0]):
_, n, err = newWSToken(runes)
case isComma(runes[0]):
_, n = newCommaToken(), 1
case isComment(runes):
_, n, err = newCommentToken(runes)
case isNewline(runes):
_, n, err = newNewlineToken(runes)
case isSep(runes):
_, n, err = newSepToken(runes)
case isOp(runes):
_, n, err = newOpToken(runes)
default:
_, n, err = newLitToken(runes)
}
if err != nil {
return 0
}
count++
runes = runes[n:]
}
return count + 1
}
// Token indicates a metadata about a given value.
type Token struct {
t TokenType
ValueType ValueType
base int
raw []rune
}
var emptyValue = Value{}
func newToken(t TokenType, raw []rune, v ValueType) Token {
return Token{
t: t,
raw: raw,
ValueType: v,
}
}
// Raw return the raw runes that were consumed
func (tok Token) Raw() []rune {
return tok.raw
}
// Type returns the token type
func (tok Token) Type() TokenType {
return tok.t
}

View File

@ -0,0 +1,349 @@
package ini
import (
"fmt"
"io"
)
// ParseState represents the current state of the parser.
type ParseState uint
// State enums for the parse table
const (
InvalidState ParseState = iota
// stmt -> value stmt'
StatementState
// stmt' -> MarkComplete | op stmt
StatementPrimeState
// value -> number | string | boolean | quoted_string
ValueState
// section -> [ section'
OpenScopeState
// section' -> value section_close
SectionState
// section_close -> ]
CloseScopeState
// SkipState will skip (NL WS)+
SkipState
// SkipTokenState will skip any token and push the previous
// state onto the stack.
SkipTokenState
// comment -> # comment' | ; comment'
// comment' -> MarkComplete | value
CommentState
// MarkComplete state will complete statements and move that
// to the completed AST list
MarkCompleteState
// TerminalState signifies that the tokens have been fully parsed
TerminalState
)
// parseTable is a state machine to dictate the grammar above.
var parseTable = map[ASTKind]map[TokenType]ParseState{
ASTKindStart: {
TokenLit: StatementState,
TokenSep: OpenScopeState,
TokenWS: SkipTokenState,
TokenNL: SkipTokenState,
TokenComment: CommentState,
TokenNone: TerminalState,
},
ASTKindCommentStatement: {
TokenLit: StatementState,
TokenSep: OpenScopeState,
TokenWS: SkipTokenState,
TokenNL: SkipTokenState,
TokenComment: CommentState,
TokenNone: MarkCompleteState,
},
ASTKindExpr: {
TokenOp: StatementPrimeState,
TokenLit: ValueState,
TokenSep: OpenScopeState,
TokenWS: ValueState,
TokenNL: SkipState,
TokenComment: CommentState,
TokenNone: MarkCompleteState,
},
ASTKindEqualExpr: {
TokenLit: ValueState,
TokenSep: ValueState,
TokenOp: ValueState,
TokenWS: SkipTokenState,
TokenNL: SkipState,
},
ASTKindStatement: {
TokenLit: SectionState,
TokenSep: CloseScopeState,
TokenWS: SkipTokenState,
TokenNL: SkipTokenState,
TokenComment: CommentState,
TokenNone: MarkCompleteState,
},
ASTKindExprStatement: {
TokenLit: ValueState,
TokenSep: ValueState,
TokenOp: ValueState,
TokenWS: ValueState,
TokenNL: MarkCompleteState,
TokenComment: CommentState,
TokenNone: TerminalState,
TokenComma: SkipState,
},
ASTKindSectionStatement: {
TokenLit: SectionState,
TokenOp: SectionState,
TokenSep: CloseScopeState,
TokenWS: SectionState,
TokenNL: SkipTokenState,
},
ASTKindCompletedSectionStatement: {
TokenWS: SkipTokenState,
TokenNL: SkipTokenState,
TokenLit: StatementState,
TokenSep: OpenScopeState,
TokenComment: CommentState,
TokenNone: MarkCompleteState,
},
ASTKindSkipStatement: {
TokenLit: StatementState,
TokenSep: OpenScopeState,
TokenWS: SkipTokenState,
TokenNL: SkipTokenState,
TokenComment: CommentState,
TokenNone: TerminalState,
},
}
// ParseAST will parse input from an io.Reader using
// an LL(1) parser.
func ParseAST(r io.Reader) ([]AST, error) {
lexer := iniLexer{}
tokens, err := lexer.Tokenize(r)
if err != nil {
return []AST{}, err
}
return parse(tokens)
}
// ParseASTBytes will parse input from a byte slice using
// an LL(1) parser.
func ParseASTBytes(b []byte) ([]AST, error) {
lexer := iniLexer{}
tokens, err := lexer.tokenize(b)
if err != nil {
return []AST{}, err
}
return parse(tokens)
}
func parse(tokens []Token) ([]AST, error) {
start := Start
stack := newParseStack(3, len(tokens))
stack.Push(start)
s := newSkipper()
loop:
for stack.Len() > 0 {
k := stack.Pop()
var tok Token
if len(tokens) == 0 {
// this occurs when all the tokens have been processed
// but reduction of what's left on the stack needs to
// occur.
tok = emptyToken
} else {
tok = tokens[0]
}
step := parseTable[k.Kind][tok.Type()]
if s.ShouldSkip(tok) {
// being in a skip state with no tokens will break out of
// the parse loop since there is nothing left to process.
if len(tokens) == 0 {
break loop
}
// if should skip is true, we skip the tokens until should skip is set to false.
step = SkipTokenState
}
switch step {
case TerminalState:
// Finished parsing. Push what should be the last
// statement to the stack. If there is anything left
// on the stack, an error in parsing has occurred.
if k.Kind != ASTKindStart {
stack.MarkComplete(k)
}
break loop
case SkipTokenState:
// When skipping a token, the previous state was popped off the stack.
// To maintain the correct state, the previous state will be pushed
// onto the stack.
stack.Push(k)
case StatementState:
if k.Kind != ASTKindStart {
stack.MarkComplete(k)
}
expr := newExpression(tok)
stack.Push(expr)
case StatementPrimeState:
if tok.Type() != TokenOp {
stack.MarkComplete(k)
continue
}
if k.Kind != ASTKindExpr {
return nil, NewParseError(
fmt.Sprintf("invalid expression: expected Expr type, but found %T type", k),
)
}
k = trimSpaces(k)
expr := newEqualExpr(k, tok)
stack.Push(expr)
case ValueState:
// ValueState requires the previous state to either be an equal expression
// or an expression statement.
switch k.Kind {
case ASTKindEqualExpr:
// assigning a value to some key
k.AppendChild(newExpression(tok))
stack.Push(newExprStatement(k))
case ASTKindExpr:
k.Root.raw = append(k.Root.raw, tok.Raw()...)
stack.Push(k)
case ASTKindExprStatement:
root := k.GetRoot()
children := root.GetChildren()
if len(children) == 0 {
return nil, NewParseError(
fmt.Sprintf("invalid expression: AST contains no children %s", k.Kind),
)
}
rhs := children[len(children)-1]
if rhs.Root.ValueType != QuotedStringType {
rhs.Root.ValueType = StringType
rhs.Root.raw = append(rhs.Root.raw, tok.Raw()...)
}
children[len(children)-1] = rhs
root.SetChildren(children)
stack.Push(k)
}
case OpenScopeState:
if !runeCompare(tok.Raw(), openBrace) {
return nil, NewParseError("expected '['")
}
// If OpenScopeState is not at the start, we must mark the previous ast as complete
//
// for example: if previous ast was a skip statement;
// we should mark it as complete before we create a new statement
if k.Kind != ASTKindStart {
stack.MarkComplete(k)
}
stmt := newStatement()
stack.Push(stmt)
case CloseScopeState:
if !runeCompare(tok.Raw(), closeBrace) {
return nil, NewParseError("expected ']'")
}
k = trimSpaces(k)
stack.Push(newCompletedSectionStatement(k))
case SectionState:
var stmt AST
switch k.Kind {
case ASTKindStatement:
// If there are multiple literals inside of a scope declaration,
// then the current token's raw value will be appended to the Name.
//
// This handles cases like [ profile default ]
//
// k will represent a SectionStatement with the children representing
// the label of the section
stmt = newSectionStatement(tok)
case ASTKindSectionStatement:
k.Root.raw = append(k.Root.raw, tok.Raw()...)
stmt = k
default:
return nil, NewParseError(
fmt.Sprintf("invalid statement: expected statement: %v", k.Kind),
)
}
stack.Push(stmt)
case MarkCompleteState:
if k.Kind != ASTKindStart {
stack.MarkComplete(k)
}
if stack.Len() == 0 {
stack.Push(start)
}
case SkipState:
stack.Push(newSkipStatement(k))
s.Skip()
case CommentState:
if k.Kind == ASTKindStart {
stack.Push(k)
} else {
stack.MarkComplete(k)
}
stmt := newCommentStatement(tok)
stack.Push(stmt)
default:
return nil, NewParseError(
fmt.Sprintf("invalid state with ASTKind %v and TokenType %v",
k.Kind, tok.Type()))
}
if len(tokens) > 0 {
tokens = tokens[1:]
}
}
// this occurs when a statement has not been completed
if stack.top > 1 {
return nil, NewParseError(fmt.Sprintf("incomplete ini expression"))
}
// returns a sublist which exludes the start symbol
return stack.List(), nil
}
// trimSpaces will trim spaces on the left and right hand side of
// the literal.
func trimSpaces(k AST) AST {
// trim left hand side of spaces
for i := 0; i < len(k.Root.raw); i++ {
if !isWhitespace(k.Root.raw[i]) {
break
}
k.Root.raw = k.Root.raw[1:]
i--
}
// trim right hand side of spaces
for i := len(k.Root.raw) - 1; i >= 0; i-- {
if !isWhitespace(k.Root.raw[i]) {
break
}
k.Root.raw = k.Root.raw[:len(k.Root.raw)-1]
}
return k
}

View File

@ -0,0 +1,334 @@
package ini
import (
"fmt"
"strconv"
"strings"
)
var (
runesTrue = []rune("true")
runesFalse = []rune("false")
)
var literalValues = [][]rune{
runesTrue,
runesFalse,
}
func isBoolValue(b []rune) bool {
for _, lv := range literalValues {
if isLitValue(lv, b) {
return true
}
}
return false
}
func isLitValue(want, have []rune) bool {
if len(have) < len(want) {
return false
}
for i := 0; i < len(want); i++ {
if want[i] != have[i] {
return false
}
}
return true
}
// isNumberValue will return whether not the leading characters in
// a byte slice is a number. A number is delimited by whitespace or
// the newline token.
//
// A number is defined to be in a binary, octal, decimal (int | float), hex format,
// or in scientific notation.
func isNumberValue(b []rune) bool {
negativeIndex := 0
helper := numberHelper{}
needDigit := false
for i := 0; i < len(b); i++ {
negativeIndex++
switch b[i] {
case '-':
if helper.IsNegative() || negativeIndex != 1 {
return false
}
helper.Determine(b[i])
needDigit = true
continue
case 'e', 'E':
if err := helper.Determine(b[i]); err != nil {
return false
}
negativeIndex = 0
needDigit = true
continue
case 'b':
if helper.numberFormat == hex {
break
}
fallthrough
case 'o', 'x':
needDigit = true
if i == 0 {
return false
}
fallthrough
case '.':
if err := helper.Determine(b[i]); err != nil {
return false
}
needDigit = true
continue
}
if i > 0 && (isNewline(b[i:]) || isWhitespace(b[i])) {
return !needDigit
}
if !helper.CorrectByte(b[i]) {
return false
}
needDigit = false
}
return !needDigit
}
func isValid(b []rune) (bool, int, error) {
if len(b) == 0 {
// TODO: should probably return an error
return false, 0, nil
}
return isValidRune(b[0]), 1, nil
}
func isValidRune(r rune) bool {
return r != ':' && r != '=' && r != '[' && r != ']' && r != ' ' && r != '\n'
}
// ValueType is an enum that will signify what type
// the Value is
type ValueType int
func (v ValueType) String() string {
switch v {
case NoneType:
return "NONE"
case DecimalType:
return "FLOAT"
case IntegerType:
return "INT"
case StringType:
return "STRING"
case BoolType:
return "BOOL"
}
return ""
}
// ValueType enums
const (
NoneType = ValueType(iota)
DecimalType
IntegerType
StringType
QuotedStringType
BoolType
)
// Value is a union container
type Value struct {
Type ValueType
raw []rune
integer int64
decimal float64
boolean bool
str string
}
func newValue(t ValueType, base int, raw []rune) (Value, error) {
v := Value{
Type: t,
raw: raw,
}
var err error
switch t {
case DecimalType:
v.decimal, err = strconv.ParseFloat(string(raw), 64)
case IntegerType:
if base != 10 {
raw = raw[2:]
}
v.integer, err = strconv.ParseInt(string(raw), base, 64)
case StringType:
v.str = string(raw)
case QuotedStringType:
v.str = string(raw[1 : len(raw)-1])
case BoolType:
v.boolean = runeCompare(v.raw, runesTrue)
}
// issue 2253
//
// if the value trying to be parsed is too large, then we will use
// the 'StringType' and raw value instead.
if nerr, ok := err.(*strconv.NumError); ok && nerr.Err == strconv.ErrRange {
v.Type = StringType
v.str = string(raw)
err = nil
}
return v, err
}
// NewStringValue returns a Value type generated using a string input.
func NewStringValue(str string) (Value, error) {
return newValue(StringType, 10, []rune(str))
}
// NewIntValue returns a Value type generated using an int64 input.
func NewIntValue(i int64) (Value, error) {
return newValue(IntegerType, 10, []rune{rune(i)})
}
// Append will append values and change the type to a string
// type.
func (v *Value) Append(tok Token) {
r := tok.Raw()
if v.Type != QuotedStringType {
v.Type = StringType
r = tok.raw[1 : len(tok.raw)-1]
}
if tok.Type() != TokenLit {
v.raw = append(v.raw, tok.Raw()...)
} else {
v.raw = append(v.raw, r...)
}
}
func (v Value) String() string {
switch v.Type {
case DecimalType:
return fmt.Sprintf("decimal: %f", v.decimal)
case IntegerType:
return fmt.Sprintf("integer: %d", v.integer)
case StringType:
return fmt.Sprintf("string: %s", string(v.raw))
case QuotedStringType:
return fmt.Sprintf("quoted string: %s", string(v.raw))
case BoolType:
return fmt.Sprintf("bool: %t", v.boolean)
default:
return "union not set"
}
}
func newLitToken(b []rune) (Token, int, error) {
n := 0
var err error
token := Token{}
if b[0] == '"' {
n, err = getStringValue(b)
if err != nil {
return token, n, err
}
token = newToken(TokenLit, b[:n], QuotedStringType)
} else if isNumberValue(b) {
var base int
base, n, err = getNumericalValue(b)
if err != nil {
return token, 0, err
}
value := b[:n]
vType := IntegerType
if contains(value, '.') || hasExponent(value) {
vType = DecimalType
}
token = newToken(TokenLit, value, vType)
token.base = base
} else if isBoolValue(b) {
n, err = getBoolValue(b)
token = newToken(TokenLit, b[:n], BoolType)
} else {
n, err = getValue(b)
token = newToken(TokenLit, b[:n], StringType)
}
return token, n, err
}
// IntValue returns an integer value
func (v Value) IntValue() int64 {
return v.integer
}
// FloatValue returns a float value
func (v Value) FloatValue() float64 {
return v.decimal
}
// BoolValue returns a bool value
func (v Value) BoolValue() bool {
return v.boolean
}
func isTrimmable(r rune) bool {
switch r {
case '\n', ' ':
return true
}
return false
}
// StringValue returns the string value
func (v Value) StringValue() string {
switch v.Type {
case StringType:
return strings.TrimFunc(string(v.raw), isTrimmable)
case QuotedStringType:
// preserve all characters in the quotes
return string(removeEscapedCharacters(v.raw[1 : len(v.raw)-1]))
default:
return strings.TrimFunc(string(v.raw), isTrimmable)
}
}
func contains(runes []rune, c rune) bool {
for i := 0; i < len(runes); i++ {
if runes[i] == c {
return true
}
}
return false
}
func runeCompare(v1 []rune, v2 []rune) bool {
if len(v1) != len(v2) {
return false
}
for i := 0; i < len(v1); i++ {
if v1[i] != v2[i] {
return false
}
}
return true
}

View File

@ -0,0 +1,30 @@
package ini
func isNewline(b []rune) bool {
if len(b) == 0 {
return false
}
if b[0] == '\n' {
return true
}
if len(b) < 2 {
return false
}
return b[0] == '\r' && b[1] == '\n'
}
func newNewlineToken(b []rune) (Token, int, error) {
i := 1
if b[0] == '\r' && isNewline(b[1:]) {
i++
}
if !isNewline([]rune(b[:i])) {
return emptyToken, 0, NewParseError("invalid new line token")
}
return newToken(TokenNL, b[:i], NoneType), i, nil
}

View File

@ -0,0 +1,152 @@
package ini
import (
"bytes"
"fmt"
"strconv"
)
const (
none = numberFormat(iota)
binary
octal
decimal
hex
exponent
)
type numberFormat int
// numberHelper is used to dictate what format a number is in
// and what to do for negative values. Since -1e-4 is a valid
// number, we cannot just simply check for duplicate negatives.
type numberHelper struct {
numberFormat numberFormat
negative bool
negativeExponent bool
}
func (b numberHelper) Exists() bool {
return b.numberFormat != none
}
func (b numberHelper) IsNegative() bool {
return b.negative || b.negativeExponent
}
func (b *numberHelper) Determine(c rune) error {
if b.Exists() {
return NewParseError(fmt.Sprintf("multiple number formats: 0%v", string(c)))
}
switch c {
case 'b':
b.numberFormat = binary
case 'o':
b.numberFormat = octal
case 'x':
b.numberFormat = hex
case 'e', 'E':
b.numberFormat = exponent
case '-':
if b.numberFormat != exponent {
b.negative = true
} else {
b.negativeExponent = true
}
case '.':
b.numberFormat = decimal
default:
return NewParseError(fmt.Sprintf("invalid number character: %v", string(c)))
}
return nil
}
func (b numberHelper) CorrectByte(c rune) bool {
switch {
case b.numberFormat == binary:
if !isBinaryByte(c) {
return false
}
case b.numberFormat == octal:
if !isOctalByte(c) {
return false
}
case b.numberFormat == hex:
if !isHexByte(c) {
return false
}
case b.numberFormat == decimal:
if !isDigit(c) {
return false
}
case b.numberFormat == exponent:
if !isDigit(c) {
return false
}
case b.negativeExponent:
if !isDigit(c) {
return false
}
case b.negative:
if !isDigit(c) {
return false
}
default:
if !isDigit(c) {
return false
}
}
return true
}
func (b numberHelper) Base() int {
switch b.numberFormat {
case binary:
return 2
case octal:
return 8
case hex:
return 16
default:
return 10
}
}
func (b numberHelper) String() string {
buf := bytes.Buffer{}
i := 0
switch b.numberFormat {
case binary:
i++
buf.WriteString(strconv.Itoa(i) + ": binary format\n")
case octal:
i++
buf.WriteString(strconv.Itoa(i) + ": octal format\n")
case hex:
i++
buf.WriteString(strconv.Itoa(i) + ": hex format\n")
case exponent:
i++
buf.WriteString(strconv.Itoa(i) + ": exponent format\n")
default:
i++
buf.WriteString(strconv.Itoa(i) + ": integer format\n")
}
if b.negative {
i++
buf.WriteString(strconv.Itoa(i) + ": negative format\n")
}
if b.negativeExponent {
i++
buf.WriteString(strconv.Itoa(i) + ": negative exponent format\n")
}
return buf.String()
}

View File

@ -0,0 +1,39 @@
package ini
import (
"fmt"
)
var (
equalOp = []rune("=")
equalColonOp = []rune(":")
)
func isOp(b []rune) bool {
if len(b) == 0 {
return false
}
switch b[0] {
case '=':
return true
case ':':
return true
default:
return false
}
}
func newOpToken(b []rune) (Token, int, error) {
tok := Token{}
switch b[0] {
case '=':
tok = newToken(TokenOp, equalOp, NoneType)
case ':':
tok = newToken(TokenOp, equalColonOp, NoneType)
default:
return tok, 0, NewParseError(fmt.Sprintf("unexpected op type, %v", b[0]))
}
return tok, 1, nil
}

View File

@ -0,0 +1,19 @@
package ini
// ParseError is an error which is returned during any part of
// the parsing process.
type ParseError struct {
msg string
}
// NewParseError will return a new ParseError where message
// is the description of the error.
func NewParseError(message string) *ParseError {
return &ParseError{
msg: message,
}
}
func (err *ParseError) Error() string {
return err.msg
}

View File

@ -0,0 +1,60 @@
package ini
import (
"bytes"
"fmt"
)
// ParseStack is a stack that contains a container, the stack portion,
// and the list which is the list of ASTs that have been successfully
// parsed.
type ParseStack struct {
top int
container []AST
list []AST
index int
}
func newParseStack(sizeContainer, sizeList int) ParseStack {
return ParseStack{
container: make([]AST, sizeContainer),
list: make([]AST, sizeList),
}
}
// Pop will return and truncate the last container element.
func (s *ParseStack) Pop() AST {
s.top--
return s.container[s.top]
}
// Push will add the new AST to the container
func (s *ParseStack) Push(ast AST) {
s.container[s.top] = ast
s.top++
}
// MarkComplete will append the AST to the list of completed statements
func (s *ParseStack) MarkComplete(ast AST) {
s.list[s.index] = ast
s.index++
}
// List will return the completed statements
func (s ParseStack) List() []AST {
return s.list[:s.index]
}
// Len will return the length of the container
func (s *ParseStack) Len() int {
return s.top
}
func (s ParseStack) String() string {
buf := bytes.Buffer{}
for i, node := range s.list {
buf.WriteString(fmt.Sprintf("%d: %v\n", i+1, node))
}
return buf.String()
}

View File

@ -0,0 +1,41 @@
package ini
import (
"fmt"
)
var (
emptyRunes = []rune{}
)
func isSep(b []rune) bool {
if len(b) == 0 {
return false
}
switch b[0] {
case '[', ']':
return true
default:
return false
}
}
var (
openBrace = []rune("[")
closeBrace = []rune("]")
)
func newSepToken(b []rune) (Token, int, error) {
tok := Token{}
switch b[0] {
case '[':
tok = newToken(TokenSep, openBrace, NoneType)
case ']':
tok = newToken(TokenSep, closeBrace, NoneType)
default:
return tok, 0, NewParseError(fmt.Sprintf("unexpected sep type, %v", b[0]))
}
return tok, 1, nil
}

View File

@ -0,0 +1,45 @@
package ini
// skipper is used to skip certain blocks of an ini file.
// Currently skipper is used to skip nested blocks of ini
// files. See example below
//
// [ foo ]
// nested = ; this section will be skipped
// a=b
// c=d
// bar=baz ; this will be included
type skipper struct {
shouldSkip bool
TokenSet bool
prevTok Token
}
func newSkipper() skipper {
return skipper{
prevTok: emptyToken,
}
}
func (s *skipper) ShouldSkip(tok Token) bool {
// should skip state will be modified only if previous token was new line (NL);
// and the current token is not WhiteSpace (WS).
if s.shouldSkip &&
s.prevTok.Type() == TokenNL &&
tok.Type() != TokenWS {
s.Continue()
return false
}
s.prevTok = tok
return s.shouldSkip
}
func (s *skipper) Skip() {
s.shouldSkip = true
}
func (s *skipper) Continue() {
s.shouldSkip = false
s.prevTok = emptyToken
}

View File

@ -0,0 +1,35 @@
package ini
// Statement is an empty AST mostly used for transitioning states.
func newStatement() AST {
return newAST(ASTKindStatement, AST{})
}
// SectionStatement represents a section AST
func newSectionStatement(tok Token) AST {
return newASTWithRootToken(ASTKindSectionStatement, tok)
}
// ExprStatement represents a completed expression AST
func newExprStatement(ast AST) AST {
return newAST(ASTKindExprStatement, ast)
}
// CommentStatement represents a comment in the ini defintion.
//
// grammar:
// comment -> #comment' | ;comment'
// comment' -> epsilon | value
func newCommentStatement(tok Token) AST {
return newAST(ASTKindCommentStatement, newExpression(tok))
}
// CompletedSectionStatement represents a completed section
func newCompletedSectionStatement(ast AST) AST {
return newAST(ASTKindCompletedSectionStatement, ast)
}
// SkipStatement is used to skip whole statements
func newSkipStatement(ast AST) AST {
return newAST(ASTKindSkipStatement, ast)
}

View File

@ -0,0 +1,284 @@
package ini
import (
"fmt"
)
// getStringValue will return a quoted string and the amount
// of bytes read
//
// an error will be returned if the string is not properly formatted
func getStringValue(b []rune) (int, error) {
if b[0] != '"' {
return 0, NewParseError("strings must start with '\"'")
}
endQuote := false
i := 1
for ; i < len(b) && !endQuote; i++ {
if escaped := isEscaped(b[:i], b[i]); b[i] == '"' && !escaped {
endQuote = true
break
} else if escaped {
/*c, err := getEscapedByte(b[i])
if err != nil {
return 0, err
}
b[i-1] = c
b = append(b[:i], b[i+1:]...)
i--*/
continue
}
}
if !endQuote {
return 0, NewParseError("missing '\"' in string value")
}
return i + 1, nil
}
// getBoolValue will return a boolean and the amount
// of bytes read
//
// an error will be returned if the boolean is not of a correct
// value
func getBoolValue(b []rune) (int, error) {
if len(b) < 4 {
return 0, NewParseError("invalid boolean value")
}
n := 0
for _, lv := range literalValues {
if len(lv) > len(b) {
continue
}
if isLitValue(lv, b) {
n = len(lv)
}
}
if n == 0 {
return 0, NewParseError("invalid boolean value")
}
return n, nil
}
// getNumericalValue will return a numerical string, the amount
// of bytes read, and the base of the number
//
// an error will be returned if the number is not of a correct
// value
func getNumericalValue(b []rune) (int, int, error) {
if !isDigit(b[0]) {
return 0, 0, NewParseError("invalid digit value")
}
i := 0
helper := numberHelper{}
loop:
for negativeIndex := 0; i < len(b); i++ {
negativeIndex++
if !isDigit(b[i]) {
switch b[i] {
case '-':
if helper.IsNegative() || negativeIndex != 1 {
return 0, 0, NewParseError("parse error '-'")
}
n := getNegativeNumber(b[i:])
i += (n - 1)
helper.Determine(b[i])
continue
case '.':
if err := helper.Determine(b[i]); err != nil {
return 0, 0, err
}
case 'e', 'E':
if err := helper.Determine(b[i]); err != nil {
return 0, 0, err
}
negativeIndex = 0
case 'b':
if helper.numberFormat == hex {
break
}
fallthrough
case 'o', 'x':
if i == 0 && b[i] != '0' {
return 0, 0, NewParseError("incorrect base format, expected leading '0'")
}
if i != 1 {
return 0, 0, NewParseError(fmt.Sprintf("incorrect base format found %s at %d index", string(b[i]), i))
}
if err := helper.Determine(b[i]); err != nil {
return 0, 0, err
}
default:
if isWhitespace(b[i]) {
break loop
}
if isNewline(b[i:]) {
break loop
}
if !(helper.numberFormat == hex && isHexByte(b[i])) {
if i+2 < len(b) && !isNewline(b[i:i+2]) {
return 0, 0, NewParseError("invalid numerical character")
} else if !isNewline([]rune{b[i]}) {
return 0, 0, NewParseError("invalid numerical character")
}
break loop
}
}
}
}
return helper.Base(), i, nil
}
// isDigit will return whether or not something is an integer
func isDigit(b rune) bool {
return b >= '0' && b <= '9'
}
func hasExponent(v []rune) bool {
return contains(v, 'e') || contains(v, 'E')
}
func isBinaryByte(b rune) bool {
switch b {
case '0', '1':
return true
default:
return false
}
}
func isOctalByte(b rune) bool {
switch b {
case '0', '1', '2', '3', '4', '5', '6', '7':
return true
default:
return false
}
}
func isHexByte(b rune) bool {
if isDigit(b) {
return true
}
return (b >= 'A' && b <= 'F') ||
(b >= 'a' && b <= 'f')
}
func getValue(b []rune) (int, error) {
i := 0
for i < len(b) {
if isNewline(b[i:]) {
break
}
if isOp(b[i:]) {
break
}
valid, n, err := isValid(b[i:])
if err != nil {
return 0, err
}
if !valid {
break
}
i += n
}
return i, nil
}
// getNegativeNumber will return a negative number from a
// byte slice. This will iterate through all characters until
// a non-digit has been found.
func getNegativeNumber(b []rune) int {
if b[0] != '-' {
return 0
}
i := 1
for ; i < len(b); i++ {
if !isDigit(b[i]) {
return i
}
}
return i
}
// isEscaped will return whether or not the character is an escaped
// character.
func isEscaped(value []rune, b rune) bool {
if len(value) == 0 {
return false
}
switch b {
case '\'': // single quote
case '"': // quote
case 'n': // newline
case 't': // tab
case '\\': // backslash
default:
return false
}
return value[len(value)-1] == '\\'
}
func getEscapedByte(b rune) (rune, error) {
switch b {
case '\'': // single quote
return '\'', nil
case '"': // quote
return '"', nil
case 'n': // newline
return '\n', nil
case 't': // table
return '\t', nil
case '\\': // backslash
return '\\', nil
default:
return b, NewParseError(fmt.Sprintf("invalid escaped character %c", b))
}
}
func removeEscapedCharacters(b []rune) []rune {
for i := 0; i < len(b); i++ {
if isEscaped(b[:i], b[i]) {
c, err := getEscapedByte(b[i])
if err != nil {
return b
}
b[i-1] = c
b = append(b[:i], b[i+1:]...)
i--
}
}
return b
}

View File

@ -0,0 +1,269 @@
package ini
import (
"fmt"
"sort"
"strings"
)
// Visitor is an interface used by walkers that will
// traverse an array of ASTs.
type Visitor interface {
VisitExpr(AST) error
VisitStatement(AST) error
}
// DefaultVisitor is used to visit statements and expressions
// and ensure that they are both of the correct format.
// In addition, upon visiting this will build sections and populate
// the Sections field which can be used to retrieve profile
// configuration.
type DefaultVisitor struct {
// scope is the profile which is being visited
scope string
// path is the file path which the visitor is visiting
path string
// Sections defines list of the profile section
Sections Sections
}
// NewDefaultVisitor returns a DefaultVisitor. It takes in a filepath
// which points to the file it is visiting.
func NewDefaultVisitor(filepath string) *DefaultVisitor {
return &DefaultVisitor{
Sections: Sections{
container: map[string]Section{},
},
path: filepath,
}
}
// VisitExpr visits expressions...
func (v *DefaultVisitor) VisitExpr(expr AST) error {
t := v.Sections.container[v.scope]
if t.values == nil {
t.values = values{}
}
if t.SourceFile == nil {
t.SourceFile = make(map[string]string, 0)
}
switch expr.Kind {
case ASTKindExprStatement:
opExpr := expr.GetRoot()
switch opExpr.Kind {
case ASTKindEqualExpr:
children := opExpr.GetChildren()
if len(children) <= 1 {
return NewParseError("unexpected token type")
}
rhs := children[1]
// The right-hand value side the equality expression is allowed to contain '[', ']', ':', '=' in the values.
// If the token is not either a literal or one of the token types that identifies those four additional
// tokens then error.
if !(rhs.Root.Type() == TokenLit || rhs.Root.Type() == TokenOp || rhs.Root.Type() == TokenSep) {
return NewParseError("unexpected token type")
}
key := EqualExprKey(opExpr)
val, err := newValue(rhs.Root.ValueType, rhs.Root.base, rhs.Root.Raw())
if err != nil {
return err
}
// lower case key to standardize
k := strings.ToLower(key)
// identify if the section already had this key, append log on section
if t.Has(k) {
t.Logs = append(t.Logs,
fmt.Sprintf("For profile: %v, overriding %v value, "+
"with a %v value found in a duplicate profile defined later in the same file %v. \n",
t.Name, k, k, v.path))
}
// assign the value
t.values[k] = val
// update the source file path for region
t.SourceFile[k] = v.path
default:
return NewParseError(fmt.Sprintf("unsupported expression %v", expr))
}
default:
return NewParseError(fmt.Sprintf("unsupported expression %v", expr))
}
v.Sections.container[v.scope] = t
return nil
}
// VisitStatement visits statements...
func (v *DefaultVisitor) VisitStatement(stmt AST) error {
switch stmt.Kind {
case ASTKindCompletedSectionStatement:
child := stmt.GetRoot()
if child.Kind != ASTKindSectionStatement {
return NewParseError(fmt.Sprintf("unsupported child statement: %T", child))
}
name := string(child.Root.Raw())
// trim start and end space
name = strings.TrimSpace(name)
// if has prefix "profile " + [ws+] + "profile-name",
// we standardize by removing the [ws+] between prefix and profile-name.
if strings.HasPrefix(name, "profile ") {
names := strings.SplitN(name, " ", 2)
name = names[0] + " " + strings.TrimLeft(names[1], " ")
}
// attach profile name on section
if !v.Sections.HasSection(name) {
v.Sections.container[name] = NewSection(name)
}
v.scope = name
default:
return NewParseError(fmt.Sprintf("unsupported statement: %s", stmt.Kind))
}
return nil
}
// Sections is a map of Section structures that represent
// a configuration.
type Sections struct {
container map[string]Section
}
// NewSections returns empty ini Sections
func NewSections() Sections {
return Sections{
container: make(map[string]Section, 0),
}
}
// GetSection will return section p. If section p does not exist,
// false will be returned in the second parameter.
func (t Sections) GetSection(p string) (Section, bool) {
v, ok := t.container[p]
return v, ok
}
// HasSection denotes if Sections consist of a section with
// provided name.
func (t Sections) HasSection(p string) bool {
_, ok := t.container[p]
return ok
}
// SetSection sets a section value for provided section name.
func (t Sections) SetSection(p string, v Section) Sections {
t.container[p] = v
return t
}
// DeleteSection deletes a section entry/value for provided section name./
func (t Sections) DeleteSection(p string) {
delete(t.container, p)
}
// values represents a map of union values.
type values map[string]Value
// List will return a list of all sections that were successfully
// parsed.
func (t Sections) List() []string {
keys := make([]string, len(t.container))
i := 0
for k := range t.container {
keys[i] = k
i++
}
sort.Strings(keys)
return keys
}
// Section contains a name and values. This represent
// a sectioned entry in a configuration file.
type Section struct {
// Name is the Section profile name
Name string
// values are the values within parsed profile
values values
// Errors is the list of errors
Errors []error
// Logs is the list of logs
Logs []string
// SourceFile is the INI Source file from where this section
// was retrieved. They key is the property, value is the
// source file the property was retrieved from.
SourceFile map[string]string
}
// NewSection returns an initialize section for the name
func NewSection(name string) Section {
return Section{
Name: name,
values: values{},
SourceFile: map[string]string{},
}
}
// UpdateSourceFile updates source file for a property to provided filepath.
func (t Section) UpdateSourceFile(property string, filepath string) {
t.SourceFile[property] = filepath
}
// UpdateValue updates value for a provided key with provided value
func (t Section) UpdateValue(k string, v Value) error {
t.values[k] = v
return nil
}
// Has will return whether or not an entry exists in a given section
func (t Section) Has(k string) bool {
_, ok := t.values[k]
return ok
}
// ValueType will returned what type the union is set to. If
// k was not found, the NoneType will be returned.
func (t Section) ValueType(k string) (ValueType, bool) {
v, ok := t.values[k]
return v.Type, ok
}
// Bool returns a bool value at k
func (t Section) Bool(k string) bool {
return t.values[k].BoolValue()
}
// Int returns an integer value at k
func (t Section) Int(k string) int64 {
return t.values[k].IntValue()
}
// Float64 returns a float value at k
func (t Section) Float64(k string) float64 {
return t.values[k].FloatValue()
}
// String returns the string value at k
func (t Section) String(k string) string {
_, ok := t.values[k]
if !ok {
return ""
}
return t.values[k].StringValue()
}

View File

@ -0,0 +1,25 @@
package ini
// Walk will traverse the AST using the v, the Visitor.
func Walk(tree []AST, v Visitor) error {
for _, node := range tree {
switch node.Kind {
case ASTKindExpr,
ASTKindExprStatement:
if err := v.VisitExpr(node); err != nil {
return err
}
case ASTKindStatement,
ASTKindCompletedSectionStatement,
ASTKindNestedSectionStatement,
ASTKindCompletedNestedSectionStatement:
if err := v.VisitStatement(node); err != nil {
return err
}
}
}
return nil
}

View File

@ -0,0 +1,24 @@
package ini
import (
"unicode"
)
// isWhitespace will return whether or not the character is
// a whitespace character.
//
// Whitespace is defined as a space or tab.
func isWhitespace(c rune) bool {
return unicode.IsSpace(c) && c != '\n' && c != '\r'
}
func newWSToken(b []rune) (Token, int, error) {
i := 0
for ; i < len(b); i++ {
if !isWhitespace(b[i]) {
break
}
}
return newToken(TokenWS, b[:i], NoneType), i, nil
}

View File

@ -0,0 +1,33 @@
package rand
import (
"crypto/rand"
"fmt"
"io"
"math/big"
)
func init() {
Reader = rand.Reader
}
// Reader provides a random reader that can reset during testing.
var Reader io.Reader
var floatMaxBigInt = big.NewInt(1 << 53)
// Float64 returns a float64 read from an io.Reader source. The returned float will be between [0.0, 1.0).
func Float64(reader io.Reader) (float64, error) {
bi, err := rand.Int(reader, floatMaxBigInt)
if err != nil {
return 0, fmt.Errorf("failed to read random value, %v", err)
}
return float64(bi.Int64()) / (1 << 53), nil
}
// CryptoRandFloat64 returns a random float64 obtained from the crypto rand
// source.
func CryptoRandFloat64() (float64, error) {
return Float64(rand.Reader)
}

View File

@ -0,0 +1,9 @@
package sdk
// Invalidator provides access to a type's invalidate method to make it
// invalidate it cache.
//
// e.g aws.SafeCredentialsProvider's Invalidate method.
type Invalidator interface {
Invalidate()
}

View File

@ -0,0 +1,74 @@
package sdk
import (
"context"
"time"
)
func init() {
NowTime = time.Now
Sleep = time.Sleep
SleepWithContext = sleepWithContext
}
// NowTime is a value for getting the current time. This value can be overridden
// for testing mocking out current time.
var NowTime func() time.Time
// Sleep is a value for sleeping for a duration. This value can be overridden
// for testing and mocking out sleep duration.
var Sleep func(time.Duration)
// SleepWithContext will wait for the timer duration to expire, or the context
// is canceled. Which ever happens first. If the context is canceled the Context's
// error will be returned.
//
// This value can be overridden for testing and mocking out sleep duration.
var SleepWithContext func(context.Context, time.Duration) error
// sleepWithContext will wait for the timer duration to expire, or the context
// is canceled. Which ever happens first. If the context is canceled the
// Context's error will be returned.
func sleepWithContext(ctx context.Context, dur time.Duration) error {
t := time.NewTimer(dur)
defer t.Stop()
select {
case <-t.C:
break
case <-ctx.Done():
return ctx.Err()
}
return nil
}
// noOpSleepWithContext does nothing, returns immediately.
func noOpSleepWithContext(context.Context, time.Duration) error {
return nil
}
func noOpSleep(time.Duration) {}
// TestingUseNopSleep is a utility for disabling sleep across the SDK for
// testing.
func TestingUseNopSleep() func() {
SleepWithContext = noOpSleepWithContext
Sleep = noOpSleep
return func() {
SleepWithContext = sleepWithContext
Sleep = time.Sleep
}
}
// TestingUseReferenceTime is a utility for swapping the time function across the SDK to return a specific reference time
// for testing purposes.
func TestingUseReferenceTime(referenceTime time.Time) func() {
NowTime = func() time.Time {
return referenceTime
}
return func() {
NowTime = time.Now
}
}

View File

@ -0,0 +1,12 @@
package sdkio
const (
// Byte is 8 bits
Byte int64 = 1
// KibiByte (KiB) is 1024 Bytes
KibiByte = Byte * 1024
// MebiByte (MiB) is 1024 KiB
MebiByte = KibiByte * 1024
// GibiByte (GiB) is 1024 MiB
GibiByte = MebiByte * 1024
)

View File

@ -0,0 +1,11 @@
package strings
import (
"strings"
)
// HasPrefixFold tests whether the string s begins with prefix, interpreted as UTF-8 strings,
// under Unicode case-folding.
func HasPrefixFold(s, prefix string) bool {
return len(s) >= len(prefix) && strings.EqualFold(s[0:len(prefix)], prefix)
}

View File

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,120 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package singleflight provides a duplicate function call suppression
// mechanism.
package singleflight
import "sync"
// call is an in-flight or completed singleflight.Do call
type call struct {
wg sync.WaitGroup
// These fields are written once before the WaitGroup is done
// and are only read after the WaitGroup is done.
val interface{}
err error
// forgotten indicates whether Forget was called with this call's key
// while the call was still in flight.
forgotten bool
// These fields are read and written with the singleflight
// mutex held before the WaitGroup is done, and are read but
// not written after the WaitGroup is done.
dups int
chans []chan<- Result
}
// Group represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type Group struct {
mu sync.Mutex // protects m
m map[string]*call // lazily initialized
}
// Result holds the results of Do, so they can be passed
// on a channel.
type Result struct {
Val interface{}
Err error
Shared bool
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
g.mu.Unlock()
c.wg.Wait()
return c.val, c.err, true
}
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
g.doCall(c, key, fn)
return c.val, c.err, c.dups > 0
}
// DoChan is like Do but returns a channel that will receive the
// results when they are ready.
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
ch := make(chan Result, 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
c.chans = append(c.chans, ch)
g.mu.Unlock()
return ch
}
c := &call{chans: []chan<- Result{ch}}
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
go g.doCall(c, key, fn)
return ch
}
// doCall handles the single call for a key.
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
c.val, c.err = fn()
c.wg.Done()
g.mu.Lock()
if !c.forgotten {
delete(g.m, key)
}
for _, ch := range c.chans {
ch <- Result{c.val, c.err, c.dups > 0}
}
g.mu.Unlock()
}
// Forget tells the singleflight to forget about a key. Future calls
// to Do for this key will call the function rather than waiting for
// an earlier call to complete.
func (g *Group) Forget(key string) {
g.mu.Lock()
if c, ok := g.m[key]; ok {
c.forgotten = true
}
delete(g.m, key)
g.mu.Unlock()
}

View File

@ -0,0 +1,13 @@
package timeconv
import "time"
// FloatSecondsDur converts a fractional seconds to duration.
func FloatSecondsDur(v float64) time.Duration {
return time.Duration(v * float64(time.Second))
}
// DurSecondsFloat converts a duration into fractional seconds.
func DurSecondsFloat(d time.Duration) float64 {
return float64(d) / float64(time.Second)
}