chore: upgrade dependencies

This commit is contained in:
2022-06-09 12:30:53 +02:00
parent 7203f3d6a1
commit dcb93ec8f7
518 changed files with 27809 additions and 3222 deletions

89
vendor/gocv.io/x/gocv/photo.go generated vendored
View File

@@ -5,6 +5,7 @@ package gocv
#include "photo.h"
*/
import "C"
import (
"image"
"unsafe"
@@ -225,3 +226,91 @@ func (b *AlignMTB) Process(src []Mat, dst *[]Mat) {
}
return
}
// FastNlMeansDenoising performs image denoising using Non-local Means Denoising algorithm
// http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
//
// For further details, please see:
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
//
func FastNlMeansDenoising(src Mat, dst *Mat) {
C.FastNlMeansDenoising(src.p, dst.p)
}
// FastNlMeansDenoisingWithParams performs image denoising using Non-local Means Denoising algorithm
// http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
//
// For further details, please see:
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
//
func FastNlMeansDenoisingWithParams(src Mat, dst *Mat, h float32, templateWindowSize int, searchWindowSize int) {
C.FastNlMeansDenoisingWithParams(src.p, dst.p, C.float(h), C.int(templateWindowSize), C.int(searchWindowSize))
}
// FastNlMeansDenoisingColored is a modification of fastNlMeansDenoising function for colored images.
//
// For further details, please see:
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
//
func FastNlMeansDenoisingColored(src Mat, dst *Mat) {
C.FastNlMeansDenoisingColored(src.p, dst.p)
}
// FastNlMeansDenoisingColoredWithParams is a modification of fastNlMeansDenoising function for colored images.
//
// For further details, please see:
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
//
func FastNlMeansDenoisingColoredWithParams(src Mat, dst *Mat, h float32, hColor float32, templateWindowSize int, searchWindowSize int) {
C.FastNlMeansDenoisingColoredWithParams(src.p, dst.p, C.float(h), C.float(hColor), C.int(templateWindowSize), C.int(searchWindowSize))
}
// DetailEnhance filter enhances the details of a particular image
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gae5930dd822c713b36f8529b21ddebd0c
//
func DetailEnhance(src Mat, dst *Mat, sigma_s, sigma_r float32) {
C.DetailEnhance(src.p, dst.p, C.float(sigma_s), C.float(sigma_r))
}
type EdgeFilter int
const (
// RecursFilter Recursive Filtering.
RecursFilter EdgeFilter = 1
// NormconvFilter Normalized Convolution Filtering.
NormconvFilter = 2
)
// EdgePreservingFilter filtering is the fundamental operation in image and video processing.
// Edge-preserving smoothing filters are used in many different applications.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gafaee2977597029bc8e35da6e67bd31f7
//
func EdgePreservingFilter(src Mat, dst *Mat, filter EdgeFilter, sigma_s, sigma_r float32) {
C.EdgePreservingFilter(src.p, dst.p, C.int(filter), C.float(sigma_s), C.float(sigma_r))
}
// PencilSketch pencil-like non-photorealistic line drawing.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gae5930dd822c713b36f8529b21ddebd0c
//
func PencilSketch(src Mat, dst1, dst2 *Mat, sigma_s, sigma_r, shade_factor float32) {
C.PencilSketch(src.p, dst1.p, dst2.p, C.float(sigma_s), C.float(sigma_r), C.float(shade_factor))
}
// Stylization aims to produce digital imagery with a wide variety of effects
// not focused on photorealism. Edge-aware filters are ideal for stylization,
// as they can abstract regions of low contrast while preserving, or enhancing,
// high-contrast features.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gacb0f7324017df153d7b5d095aed53206
//
func Stylization(src Mat, dst *Mat, sigma_s, sigma_r float32) {
C.Stylization(src.p, dst.p, C.float(sigma_s), C.float(sigma_r))
}