chore: upgrade dependencies
This commit is contained in:
89
vendor/gocv.io/x/gocv/photo.go
generated
vendored
89
vendor/gocv.io/x/gocv/photo.go
generated
vendored
@@ -5,6 +5,7 @@ package gocv
|
||||
#include "photo.h"
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"image"
|
||||
"unsafe"
|
||||
@@ -225,3 +226,91 @@ func (b *AlignMTB) Process(src []Mat, dst *[]Mat) {
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// FastNlMeansDenoising performs image denoising using Non-local Means Denoising algorithm
|
||||
// http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
|
||||
//
|
||||
func FastNlMeansDenoising(src Mat, dst *Mat) {
|
||||
C.FastNlMeansDenoising(src.p, dst.p)
|
||||
}
|
||||
|
||||
// FastNlMeansDenoisingWithParams performs image denoising using Non-local Means Denoising algorithm
|
||||
// http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
|
||||
//
|
||||
func FastNlMeansDenoisingWithParams(src Mat, dst *Mat, h float32, templateWindowSize int, searchWindowSize int) {
|
||||
C.FastNlMeansDenoisingWithParams(src.p, dst.p, C.float(h), C.int(templateWindowSize), C.int(searchWindowSize))
|
||||
}
|
||||
|
||||
// FastNlMeansDenoisingColored is a modification of fastNlMeansDenoising function for colored images.
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
|
||||
//
|
||||
func FastNlMeansDenoisingColored(src Mat, dst *Mat) {
|
||||
C.FastNlMeansDenoisingColored(src.p, dst.p)
|
||||
}
|
||||
|
||||
// FastNlMeansDenoisingColoredWithParams is a modification of fastNlMeansDenoising function for colored images.
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
|
||||
//
|
||||
func FastNlMeansDenoisingColoredWithParams(src Mat, dst *Mat, h float32, hColor float32, templateWindowSize int, searchWindowSize int) {
|
||||
C.FastNlMeansDenoisingColoredWithParams(src.p, dst.p, C.float(h), C.float(hColor), C.int(templateWindowSize), C.int(searchWindowSize))
|
||||
}
|
||||
|
||||
// DetailEnhance filter enhances the details of a particular image
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gae5930dd822c713b36f8529b21ddebd0c
|
||||
//
|
||||
func DetailEnhance(src Mat, dst *Mat, sigma_s, sigma_r float32) {
|
||||
C.DetailEnhance(src.p, dst.p, C.float(sigma_s), C.float(sigma_r))
|
||||
}
|
||||
|
||||
type EdgeFilter int
|
||||
|
||||
const (
|
||||
// RecursFilter Recursive Filtering.
|
||||
RecursFilter EdgeFilter = 1
|
||||
|
||||
// NormconvFilter Normalized Convolution Filtering.
|
||||
NormconvFilter = 2
|
||||
)
|
||||
|
||||
// EdgePreservingFilter filtering is the fundamental operation in image and video processing.
|
||||
// Edge-preserving smoothing filters are used in many different applications.
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gafaee2977597029bc8e35da6e67bd31f7
|
||||
//
|
||||
func EdgePreservingFilter(src Mat, dst *Mat, filter EdgeFilter, sigma_s, sigma_r float32) {
|
||||
C.EdgePreservingFilter(src.p, dst.p, C.int(filter), C.float(sigma_s), C.float(sigma_r))
|
||||
}
|
||||
|
||||
// PencilSketch pencil-like non-photorealistic line drawing.
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gae5930dd822c713b36f8529b21ddebd0c
|
||||
//
|
||||
func PencilSketch(src Mat, dst1, dst2 *Mat, sigma_s, sigma_r, shade_factor float32) {
|
||||
C.PencilSketch(src.p, dst1.p, dst2.p, C.float(sigma_s), C.float(sigma_r), C.float(shade_factor))
|
||||
}
|
||||
|
||||
// Stylization aims to produce digital imagery with a wide variety of effects
|
||||
// not focused on photorealism. Edge-aware filters are ideal for stylization,
|
||||
// as they can abstract regions of low contrast while preserving, or enhancing,
|
||||
// high-contrast features.
|
||||
//
|
||||
// For further details, please see:
|
||||
// https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gacb0f7324017df153d7b5d095aed53206
|
||||
//
|
||||
func Stylization(src Mat, dst *Mat, sigma_s, sigma_r float32) {
|
||||
C.Stylization(src.p, dst.p, C.float(sigma_s), C.float(sigma_r))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user