628 lines
20 KiB
C++
628 lines
20 KiB
C++
#include "imgproc.h"
|
|
|
|
double ArcLength(Contour curve, bool is_closed) {
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < curve.length; i++) {
|
|
pts.push_back(cv::Point(curve.points[i].x, curve.points[i].y));
|
|
}
|
|
|
|
return cv::arcLength(pts, is_closed);
|
|
}
|
|
|
|
Contour ApproxPolyDP(Contour curve, double epsilon, bool closed) {
|
|
std::vector<cv::Point> curvePts;
|
|
|
|
for (size_t i = 0; i < curve.length; i++) {
|
|
curvePts.push_back(cv::Point(curve.points[i].x, curve.points[i].y));
|
|
}
|
|
|
|
std::vector<cv::Point> approxCurvePts;
|
|
cv::approxPolyDP(curvePts, approxCurvePts, epsilon, closed);
|
|
|
|
int length = approxCurvePts.size();
|
|
Point* points = new Point[length];
|
|
|
|
for (size_t i = 0; i < length; i++) {
|
|
points[i] = (Point){approxCurvePts[i].x, approxCurvePts[i].y};
|
|
}
|
|
|
|
return (Contour){points, length};
|
|
}
|
|
|
|
void CvtColor(Mat src, Mat dst, int code) {
|
|
cv::cvtColor(*src, *dst, code);
|
|
}
|
|
|
|
void EqualizeHist(Mat src, Mat dst) {
|
|
cv::equalizeHist(*src, *dst);
|
|
}
|
|
|
|
void CalcHist(struct Mats mats, IntVector chans, Mat mask, Mat hist, IntVector sz, FloatVector rng, bool acc) {
|
|
std::vector<cv::Mat> images;
|
|
|
|
for (int i = 0; i < mats.length; ++i) {
|
|
images.push_back(*mats.mats[i]);
|
|
}
|
|
|
|
std::vector<int> channels;
|
|
|
|
for (int i = 0, *v = chans.val; i < chans.length; ++v, ++i) {
|
|
channels.push_back(*v);
|
|
}
|
|
|
|
std::vector<int> histSize;
|
|
|
|
for (int i = 0, *v = sz.val; i < sz.length; ++v, ++i) {
|
|
histSize.push_back(*v);
|
|
}
|
|
|
|
std::vector<float> ranges;
|
|
|
|
float* f;
|
|
int i;
|
|
for (i = 0, f = rng.val; i < rng.length; ++f, ++i) {
|
|
ranges.push_back(*f);
|
|
}
|
|
|
|
cv::calcHist(images, channels, *mask, *hist, histSize, ranges, acc);
|
|
}
|
|
|
|
void CalcBackProject(struct Mats mats, IntVector chans, Mat hist, Mat backProject, FloatVector rng, bool uniform){
|
|
std::vector<cv::Mat> images;
|
|
|
|
for (int i = 0; i < mats.length; ++i) {
|
|
images.push_back(*mats.mats[i]);
|
|
}
|
|
|
|
std::vector<int> channels;
|
|
for (int i = 0, *v = chans.val; i < chans.length; ++v, ++i) {
|
|
channels.push_back(*v);
|
|
}
|
|
|
|
std::vector<float> ranges;
|
|
|
|
float* f;
|
|
int i;
|
|
for (i = 0, f = rng.val; i < rng.length; ++f, ++i) {
|
|
ranges.push_back(*f);
|
|
}
|
|
|
|
cv::calcBackProject(images, channels, *hist, *backProject, ranges, uniform);
|
|
}
|
|
|
|
double CompareHist(Mat hist1, Mat hist2, int method) {
|
|
return cv::compareHist(*hist1, *hist2, method);
|
|
}
|
|
|
|
struct RotatedRect FitEllipse(Points points)
|
|
{
|
|
Point *rpts = new Point[points.length];
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++)
|
|
{
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
Point pt = {points.points[i].x, points.points[i].y};
|
|
rpts[i] = pt;
|
|
}
|
|
|
|
cv::RotatedRect bRect = cv::fitEllipse(pts);
|
|
|
|
Rect r = {bRect.boundingRect().x, bRect.boundingRect().y, bRect.boundingRect().width, bRect.boundingRect().height};
|
|
Point centrpt = {int(lroundf(bRect.center.x)), int(lroundf(bRect.center.y))};
|
|
Size szsz = {int(lroundf(bRect.size.width)), int(lroundf(bRect.size.height))};
|
|
|
|
RotatedRect rotRect = {(Contour){rpts, 4}, r, centrpt, szsz, bRect.angle};
|
|
return rotRect;
|
|
}
|
|
|
|
void ConvexHull(Contour points, Mat hull, bool clockwise, bool returnPoints) {
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
}
|
|
|
|
cv::convexHull(pts, *hull, clockwise, returnPoints);
|
|
}
|
|
|
|
void ConvexityDefects(Contour points, Mat hull, Mat result) {
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
}
|
|
|
|
cv::convexityDefects(pts, *hull, *result);
|
|
}
|
|
|
|
void BilateralFilter(Mat src, Mat dst, int d, double sc, double ss) {
|
|
cv::bilateralFilter(*src, *dst, d, sc, ss);
|
|
}
|
|
|
|
void Blur(Mat src, Mat dst, Size ps) {
|
|
cv::Size sz(ps.width, ps.height);
|
|
cv::blur(*src, *dst, sz);
|
|
}
|
|
|
|
void BoxFilter(Mat src, Mat dst, int ddepth, Size ps) {
|
|
cv::Size sz(ps.width, ps.height);
|
|
cv::boxFilter(*src, *dst, ddepth, sz);
|
|
}
|
|
|
|
void SqBoxFilter(Mat src, Mat dst, int ddepth, Size ps) {
|
|
cv::Size sz(ps.width, ps.height);
|
|
cv::sqrBoxFilter(*src, *dst, ddepth, sz);
|
|
}
|
|
|
|
void Dilate(Mat src, Mat dst, Mat kernel) {
|
|
cv::dilate(*src, *dst, *kernel);
|
|
}
|
|
|
|
void DistanceTransform(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) {
|
|
cv::distanceTransform(*src, *dst, *labels, distanceType, maskSize, labelType);
|
|
}
|
|
|
|
void Erode(Mat src, Mat dst, Mat kernel) {
|
|
cv::erode(*src, *dst, *kernel);
|
|
}
|
|
|
|
void MatchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask) {
|
|
cv::matchTemplate(*image, *templ, *result, method, *mask);
|
|
}
|
|
|
|
struct Moment Moments(Mat src, bool binaryImage) {
|
|
cv::Moments m = cv::moments(*src, binaryImage);
|
|
Moment mom = {m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03,
|
|
m.mu20, m.mu11, m.mu02, m.mu30, m.mu21, m.mu12, m.mu03,
|
|
m.nu20, m.nu11, m.nu02, m.nu30, m.nu21, m.nu12, m.nu03
|
|
};
|
|
return mom;
|
|
}
|
|
|
|
void PyrDown(Mat src, Mat dst, Size size, int borderType) {
|
|
cv::Size cvSize(size.width, size.height);
|
|
cv::pyrDown(*src, *dst, cvSize, borderType);
|
|
}
|
|
|
|
void PyrUp(Mat src, Mat dst, Size size, int borderType) {
|
|
cv::Size cvSize(size.width, size.height);
|
|
cv::pyrUp(*src, *dst, cvSize, borderType);
|
|
}
|
|
|
|
struct Rect BoundingRect(Contour con) {
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < con.length; i++) {
|
|
pts.push_back(cv::Point(con.points[i].x, con.points[i].y));
|
|
}
|
|
|
|
cv::Rect bRect = cv::boundingRect(pts);
|
|
Rect r = {bRect.x, bRect.y, bRect.width, bRect.height};
|
|
return r;
|
|
}
|
|
|
|
void BoxPoints(RotatedRect rect, Mat boxPts){
|
|
cv::Point2f centerPt(rect.center.x , rect.center.y);
|
|
cv::Size2f rSize(rect.size.width, rect.size.height);
|
|
cv::RotatedRect rotatedRectangle(centerPt, rSize, rect.angle);
|
|
cv::boxPoints(rotatedRectangle, *boxPts);
|
|
}
|
|
|
|
double ContourArea(Contour con) {
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < con.length; i++) {
|
|
pts.push_back(cv::Point(con.points[i].x, con.points[i].y));
|
|
}
|
|
|
|
return cv::contourArea(pts);
|
|
}
|
|
|
|
struct RotatedRect MinAreaRect(Points points){
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
}
|
|
|
|
cv::RotatedRect cvrect = cv::minAreaRect(pts);
|
|
|
|
Point* rpts = new Point[4];
|
|
cv::Point2f* pts4 = new cv::Point2f[4];
|
|
cvrect.points(pts4);
|
|
|
|
for (size_t j = 0; j < 4; j++) {
|
|
Point pt = {int(lroundf(pts4[j].x)), int(lroundf(pts4[j].y))};
|
|
rpts[j] = pt;
|
|
}
|
|
|
|
delete[] pts4;
|
|
|
|
cv::Rect bRect = cvrect.boundingRect();
|
|
Rect r = {bRect.x, bRect.y, bRect.width, bRect.height};
|
|
Point centrpt = {int(lroundf(cvrect.center.x)), int(lroundf(cvrect.center.y))};
|
|
Size szsz = {int(lroundf(cvrect.size.width)), int(lroundf(cvrect.size.height))};
|
|
|
|
RotatedRect retrect = {(Contour){rpts, 4}, r, centrpt, szsz, cvrect.angle};
|
|
return retrect;
|
|
}
|
|
|
|
void MinEnclosingCircle(Points points, Point2f* center, float* radius){
|
|
std::vector<cv::Point> pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
}
|
|
|
|
cv::Point2f center2f;
|
|
cv::minEnclosingCircle(pts, center2f, *radius);
|
|
center->x = center2f.x;
|
|
center->y = center2f.y;
|
|
}
|
|
|
|
struct Contours FindContours(Mat src, int mode, int method) {
|
|
std::vector<std::vector<cv::Point> > contours;
|
|
cv::findContours(*src, contours, mode, method);
|
|
|
|
Contour* points = new Contour[contours.size()];
|
|
|
|
for (size_t i = 0; i < contours.size(); i++) {
|
|
Point* pts = new Point[contours[i].size()];
|
|
|
|
for (size_t j = 0; j < contours[i].size(); j++) {
|
|
Point pt = {contours[i][j].x, contours[i][j].y};
|
|
pts[j] = pt;
|
|
}
|
|
|
|
points[i] = (Contour){pts, (int)contours[i].size()};
|
|
}
|
|
|
|
Contours cons = {points, (int)contours.size()};
|
|
return cons;
|
|
}
|
|
|
|
int ConnectedComponents(Mat src, Mat labels, int connectivity, int ltype, int ccltype){
|
|
return cv::connectedComponents(*src, *labels, connectivity, ltype, ccltype);
|
|
}
|
|
|
|
|
|
int ConnectedComponentsWithStats(Mat src, Mat labels, Mat stats, Mat centroids,
|
|
int connectivity, int ltype, int ccltype){
|
|
return cv::connectedComponentsWithStats(*src, *labels, *stats, *centroids, connectivity, ltype, ccltype);
|
|
}
|
|
|
|
Mat GetStructuringElement(int shape, Size ksize) {
|
|
cv::Size sz(ksize.width, ksize.height);
|
|
return new cv::Mat(cv::getStructuringElement(shape, sz));
|
|
}
|
|
|
|
Scalar MorphologyDefaultBorderValue(){
|
|
cv::Scalar cs = cv::morphologyDefaultBorderValue();
|
|
return (Scalar){cs[0],cs[1],cs[2],cs[3]};
|
|
}
|
|
|
|
void MorphologyEx(Mat src, Mat dst, int op, Mat kernel) {
|
|
cv::morphologyEx(*src, *dst, op, *kernel);
|
|
}
|
|
|
|
void MorphologyExWithParams(Mat src, Mat dst, int op, Mat kernel, Point pt, int iterations, int borderType) {
|
|
cv::Point pt1(pt.x, pt.y);
|
|
cv::morphologyEx(*src, *dst, op, *kernel, pt1, iterations, borderType);
|
|
}
|
|
|
|
void GaussianBlur(Mat src, Mat dst, Size ps, double sX, double sY, int bt) {
|
|
cv::Size sz(ps.width, ps.height);
|
|
cv::GaussianBlur(*src, *dst, sz, sX, sY, bt);
|
|
}
|
|
|
|
void Laplacian(Mat src, Mat dst, int dDepth, int kSize, double scale, double delta,
|
|
int borderType) {
|
|
cv::Laplacian(*src, *dst, dDepth, kSize, scale, delta, borderType);
|
|
}
|
|
|
|
void Scharr(Mat src, Mat dst, int dDepth, int dx, int dy, double scale, double delta,
|
|
int borderType) {
|
|
cv::Scharr(*src, *dst, dDepth, dx, dy, scale, delta, borderType);
|
|
}
|
|
|
|
void MedianBlur(Mat src, Mat dst, int ksize) {
|
|
cv::medianBlur(*src, *dst, ksize);
|
|
}
|
|
|
|
void Canny(Mat src, Mat edges, double t1, double t2) {
|
|
cv::Canny(*src, *edges, t1, t2);
|
|
}
|
|
|
|
void CornerSubPix(Mat img, Mat corners, Size winSize, Size zeroZone, TermCriteria criteria) {
|
|
cv::Size wsz(winSize.width, winSize.height);
|
|
cv::Size zsz(zeroZone.width, zeroZone.height);
|
|
cv::cornerSubPix(*img, *corners, wsz, zsz, *criteria);
|
|
}
|
|
|
|
void GoodFeaturesToTrack(Mat img, Mat corners, int maxCorners, double quality, double minDist) {
|
|
cv::goodFeaturesToTrack(*img, *corners, maxCorners, quality, minDist);
|
|
}
|
|
|
|
void GrabCut(Mat img, Mat mask, Rect r, Mat bgdModel, Mat fgdModel, int iterCount, int mode) {
|
|
cv::Rect cvRect = cv::Rect(r.x, r.y, r.width, r.height);
|
|
cv::grabCut(*img, *mask, cvRect, *bgdModel, *fgdModel, iterCount, mode);
|
|
}
|
|
|
|
void HoughCircles(Mat src, Mat circles, int method, double dp, double minDist) {
|
|
cv::HoughCircles(*src, *circles, method, dp, minDist);
|
|
}
|
|
|
|
void HoughCirclesWithParams(Mat src, Mat circles, int method, double dp, double minDist,
|
|
double param1, double param2, int minRadius, int maxRadius) {
|
|
cv::HoughCircles(*src, *circles, method, dp, minDist, param1, param2, minRadius, maxRadius);
|
|
}
|
|
|
|
void HoughLines(Mat src, Mat lines, double rho, double theta, int threshold) {
|
|
cv::HoughLines(*src, *lines, rho, theta, threshold);
|
|
}
|
|
|
|
void HoughLinesP(Mat src, Mat lines, double rho, double theta, int threshold) {
|
|
cv::HoughLinesP(*src, *lines, rho, theta, threshold);
|
|
}
|
|
|
|
void HoughLinesPWithParams(Mat src, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) {
|
|
cv::HoughLinesP(*src, *lines, rho, theta, threshold, minLineLength, maxLineGap);
|
|
}
|
|
|
|
void HoughLinesPointSet(Mat points, Mat lines, int linesMax, int threshold,
|
|
double minRho, double maxRho, double rhoStep,
|
|
double minTheta, double maxTheta, double thetaStep) {
|
|
cv::HoughLinesPointSet(*points, *lines, linesMax, threshold,
|
|
minRho, maxRho, rhoStep, minTheta, maxTheta, thetaStep );
|
|
}
|
|
|
|
void Integral(Mat src, Mat sum, Mat sqsum, Mat tilted) {
|
|
cv::integral(*src, *sum, *sqsum, *tilted);
|
|
}
|
|
|
|
void Threshold(Mat src, Mat dst, double thresh, double maxvalue, int typ) {
|
|
cv::threshold(*src, *dst, thresh, maxvalue, typ);
|
|
}
|
|
|
|
void AdaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType,
|
|
int blockSize, double c) {
|
|
cv::adaptiveThreshold(*src, *dst, maxValue, adaptiveMethod, thresholdType, blockSize, c);
|
|
}
|
|
|
|
void ArrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness) {
|
|
cv::Point p1(pt1.x, pt1.y);
|
|
cv::Point p2(pt2.x, pt2.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
|
|
cv::arrowedLine(*img, p1, p2, c, thickness);
|
|
}
|
|
|
|
bool ClipLine(Size imgSize, Point pt1, Point pt2) {
|
|
cv::Size sz(imgSize.width, imgSize.height);
|
|
cv::Point p1(pt1.x, pt1.y);
|
|
cv::Point p2(pt2.x, pt2.y);
|
|
|
|
return cv::clipLine(sz, p1, p2);
|
|
}
|
|
|
|
void Circle(Mat img, Point center, int radius, Scalar color, int thickness) {
|
|
cv::Point p1(center.x, center.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
|
|
cv::circle(*img, p1, radius, c, thickness);
|
|
}
|
|
|
|
void Ellipse(Mat img, Point center, Point axes, double angle, double
|
|
startAngle, double endAngle, Scalar color, int thickness) {
|
|
cv::Point p1(center.x, center.y);
|
|
cv::Point p2(axes.x, axes.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
|
|
cv::ellipse(*img, p1, p2, angle, startAngle, endAngle, c, thickness);
|
|
}
|
|
|
|
void Line(Mat img, Point pt1, Point pt2, Scalar color, int thickness) {
|
|
cv::Point p1(pt1.x, pt1.y);
|
|
cv::Point p2(pt2.x, pt2.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
|
|
cv::line(*img, p1, p2, c, thickness);
|
|
}
|
|
|
|
void Rectangle(Mat img, Rect r, Scalar color, int thickness) {
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
cv::rectangle(
|
|
*img,
|
|
cv::Point(r.x, r.y),
|
|
cv::Point(r.x + r.width, r.y + r.height),
|
|
c,
|
|
thickness,
|
|
cv::LINE_AA
|
|
);
|
|
}
|
|
|
|
void FillPoly(Mat img, Contours points, Scalar color) {
|
|
std::vector<std::vector<cv::Point> > pts;
|
|
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
Contour contour = points.contours[i];
|
|
|
|
std::vector<cv::Point> cntr;
|
|
|
|
for (size_t i = 0; i < contour.length; i++) {
|
|
cntr.push_back(cv::Point(contour.points[i].x, contour.points[i].y));
|
|
}
|
|
|
|
pts.push_back(cntr);
|
|
}
|
|
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
|
|
cv::fillPoly(*img, pts, c);
|
|
}
|
|
|
|
struct Size GetTextSize(const char* text, int fontFace, double fontScale, int thickness) {
|
|
cv::Size sz = cv::getTextSize(text, fontFace, fontScale, thickness, NULL);
|
|
Size size = {sz.width, sz.height};
|
|
return size;
|
|
}
|
|
|
|
void PutText(Mat img, const char* text, Point org, int fontFace, double fontScale,
|
|
Scalar color, int thickness) {
|
|
cv::Point pt(org.x, org.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
cv::putText(*img, text, pt, fontFace, fontScale, c, thickness);
|
|
}
|
|
|
|
void PutTextWithParams(Mat img, const char* text, Point org, int fontFace, double fontScale,
|
|
Scalar color, int thickness, int lineType, bool bottomLeftOrigin) {
|
|
cv::Point pt(org.x, org.y);
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
cv::putText(*img, text, pt, fontFace, fontScale, c, thickness, lineType, bottomLeftOrigin);
|
|
}
|
|
|
|
void Resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interp) {
|
|
cv::Size sz(dsize.width, dsize.height);
|
|
cv::resize(*src, *dst, sz, fx, fy, interp);
|
|
}
|
|
|
|
void GetRectSubPix(Mat src, Size patchSize, Point center, Mat dst) {
|
|
cv::Size sz(patchSize.width, patchSize.height);
|
|
cv::Point pt(center.x, center.y);
|
|
cv::getRectSubPix(*src, sz, pt, *dst);
|
|
}
|
|
|
|
Mat GetRotationMatrix2D(Point center, double angle, double scale) {
|
|
cv::Point pt(center.x, center.y);
|
|
return new cv::Mat(cv::getRotationMatrix2D(pt, angle, scale));
|
|
}
|
|
|
|
void WarpAffine(Mat src, Mat dst, Mat m, Size dsize) {
|
|
cv::Size sz(dsize.width, dsize.height);
|
|
cv::warpAffine(*src, *dst, *m, sz);
|
|
}
|
|
|
|
void WarpAffineWithParams(Mat src, Mat dst, Mat rot_mat, Size dsize, int flags, int borderMode,
|
|
Scalar borderValue) {
|
|
cv::Size sz(dsize.width, dsize.height);
|
|
cv::Scalar c = cv::Scalar(borderValue.val1, borderValue.val2, borderValue.val3, borderValue.val4);
|
|
cv::warpAffine(*src, *dst, *rot_mat, sz, flags, borderMode, c);
|
|
}
|
|
|
|
void WarpPerspective(Mat src, Mat dst, Mat m, Size dsize) {
|
|
cv::Size sz(dsize.width, dsize.height);
|
|
cv::warpPerspective(*src, *dst, *m, sz);
|
|
}
|
|
|
|
void Watershed(Mat image, Mat markers) {
|
|
cv::watershed(*image, *markers);
|
|
}
|
|
|
|
void ApplyColorMap(Mat src, Mat dst, int colormap) {
|
|
cv::applyColorMap(*src, *dst, colormap);
|
|
}
|
|
|
|
void ApplyCustomColorMap(Mat src, Mat dst, Mat colormap) {
|
|
cv::applyColorMap(*src, *dst, *colormap);
|
|
}
|
|
|
|
Mat GetPerspectiveTransform(Contour src, Contour dst) {
|
|
std::vector<cv::Point2f> src_pts;
|
|
|
|
for (size_t i = 0; i < src.length; i++) {
|
|
src_pts.push_back(cv::Point2f(src.points[i].x, src.points[i].y));
|
|
}
|
|
|
|
std::vector<cv::Point2f> dst_pts;
|
|
|
|
for (size_t i = 0; i < dst.length; i++) {
|
|
dst_pts.push_back(cv::Point2f(dst.points[i].x, dst.points[i].y));
|
|
}
|
|
|
|
return new cv::Mat(cv::getPerspectiveTransform(src_pts, dst_pts));
|
|
}
|
|
|
|
void DrawContours(Mat src, Contours contours, int contourIdx, Scalar color, int thickness) {
|
|
std::vector<std::vector<cv::Point> > cntrs;
|
|
|
|
for (size_t i = 0; i < contours.length; i++) {
|
|
Contour contour = contours.contours[i];
|
|
|
|
std::vector<cv::Point> cntr;
|
|
|
|
for (size_t i = 0; i < contour.length; i++) {
|
|
cntr.push_back(cv::Point(contour.points[i].x, contour.points[i].y));
|
|
}
|
|
|
|
cntrs.push_back(cntr);
|
|
}
|
|
|
|
cv::Scalar c = cv::Scalar(color.val1, color.val2, color.val3, color.val4);
|
|
cv::drawContours(*src, cntrs, contourIdx, c, thickness);
|
|
}
|
|
|
|
void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) {
|
|
cv::Sobel(*src, *dst, ddepth, dx, dy, ksize, scale, delta, borderType);
|
|
}
|
|
|
|
void SpatialGradient(Mat src, Mat dx, Mat dy, int ksize, int borderType) {
|
|
cv::spatialGradient(*src, *dx, *dy, ksize, borderType);
|
|
}
|
|
|
|
|
|
void Remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) {
|
|
cv::Scalar c = cv::Scalar(borderValue.val1, borderValue.val2, borderValue.val3, borderValue.val4);
|
|
cv::remap(*src, *dst, *map1, *map2, interpolation, borderMode, c);
|
|
}
|
|
|
|
void Filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) {
|
|
cv::Point anchorPt(anchor.x, anchor.y);
|
|
cv::filter2D(*src, *dst, ddepth, *kernel, anchorPt, delta, borderType);
|
|
}
|
|
|
|
void SepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) {
|
|
cv::Point anchorPt(anchor.x, anchor.y);
|
|
cv::sepFilter2D(*src, *dst, ddepth, *kernelX, *kernelY, anchorPt, delta, borderType);
|
|
}
|
|
|
|
void LogPolar(Mat src, Mat dst, Point center, double m, int flags) {
|
|
cv::Point2f centerPt(center.x, center.y);
|
|
cv::logPolar(*src, *dst, centerPt, m, flags);
|
|
}
|
|
|
|
void FitLine(Contour points, Mat line, int distType, double param, double reps, double aeps) {
|
|
std::vector<cv::Point> pts;
|
|
for (size_t i = 0; i < points.length; i++) {
|
|
pts.push_back(cv::Point(points.points[i].x, points.points[i].y));
|
|
}
|
|
cv::fitLine(pts, *line, distType, param, reps, aeps);
|
|
}
|
|
|
|
void LinearPolar(Mat src, Mat dst, Point center, double maxRadius, int flags) {
|
|
cv::Point2f centerPt(center.x, center.y);
|
|
cv::linearPolar(*src, *dst, centerPt, maxRadius, flags);
|
|
}
|
|
|
|
CLAHE CLAHE_Create() {
|
|
return new cv::Ptr<cv::CLAHE>(cv::createCLAHE());
|
|
}
|
|
|
|
CLAHE CLAHE_CreateWithParams(double clipLimit, Size tileGridSize) {
|
|
cv::Size sz(tileGridSize.width, tileGridSize.height);
|
|
return new cv::Ptr<cv::CLAHE>(cv::createCLAHE(clipLimit, sz));
|
|
}
|
|
|
|
void CLAHE_Close(CLAHE c) {
|
|
delete c;
|
|
}
|
|
|
|
void CLAHE_Apply(CLAHE c, Mat src, Mat dst) {
|
|
(*c)->apply(*src, *dst);
|
|
}
|
|
|
|
void InvertAffineTransform(Mat src, Mat dst) {
|
|
cv::invertAffineTransform(*src, *dst);
|
|
}
|