feat: build speedzone models

This commit is contained in:
Cyrille Nofficial 2023-03-07 19:48:48 +01:00
parent f6899fa277
commit 7d7d2af622

View File

@ -15,7 +15,6 @@ import zipfile
import tensorflow.keras.losses import tensorflow.keras.losses
# from tensorflow.keras import backend as K
from tensorflow.keras import callbacks from tensorflow.keras import callbacks
from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Dropout, Flatten, Dense from tensorflow.keras.layers import Dropout, Flatten, Dense
@ -29,6 +28,15 @@ MODEL_CATEGORICAL = "categorical"
MODEL_LINEAR = "linear" MODEL_LINEAR = "linear"
def linear_bin_speed_zone(a: int, N: int = 4) -> npt.NDArray[np.float64]:
"""
create a bin of length N
"""
arr = np.zeros(N)
arr[a] = 1
return arr
def linear_bin(a: float, N: int = 15, offset: int = 1, R: float = 2.0) -> npt.NDArray[np.float64]: def linear_bin(a: float, N: int = 15, offset: int = 1, R: float = 2.0) -> npt.NDArray[np.float64]:
""" """
create a bin of length N create a bin of length N
@ -57,6 +65,12 @@ def get_data(root_dir: pathlib.Path, filename: str) -> typing.List[typing.Any]:
return [(d['user/angle']), root_dir, d['cam/image_array']] return [(d['user/angle']), root_dir, d['cam/image_array']]
def get_data_speed_zone(root_dir, filename):
print('load data from file ' + filename)
d = json.load(open(os.path.join(root_dir, filename)))
return [(d['speed_zone']), root_dir, d['cam/image_array']]
numbers = re.compile(r'(\d+)') numbers = re.compile(r'(\d+)')
@ -66,8 +80,8 @@ def unzip_file(root: pathlib.Path, f: str) -> None:
zip_ref.close() zip_ref.close()
def train(model_type: str, batch_size: int, slide_size: int, img_height: int, img_width: int, img_depth: int, def train(model_type: str, record_field: str, batch_size: int, slide_size: int, img_height: int, img_width: int,
horizon: int, drop: float) -> None: img_depth: int, horizon: int, drop: float) -> None:
# env = cs.TrainingEnvironment() # env = cs.TrainingEnvironment()
os.system('mkdir -p logs') os.system('mkdir -p logs')
@ -83,15 +97,24 @@ def train(model_type: str, batch_size: int, slide_size: int, img_height: int, im
if f.endswith('.zip'): if f.endswith('.zip'):
unzip_file(pathlib.Path(root), f) unzip_file(pathlib.Path(root), f)
for root, dirs, files in os.walk('/opt/ml/input/data/train'): if record_field == 'angle':
data.extend( output_name = 'angle_out'
[get_data(pathlib.Path(root), f) for f in sorted(files, key=str.lower) if for root, dirs, files in os.walk('/opt/ml/input/data/train'):
f.startswith('record') and f.endswith('.json')]) data.extend(
[get_data(root, f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
elif record_field == 'speed_zone':
output_name = 'speed_zone_output'
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
data.extend(
[get_data_speed_zone(root, f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
else:
print(f"invalid record filed: {record_field}")
return
# ### Loading throttle and angle ### # ### Loading values (angle or speed_zone) ###
angle = [d[0] for d in data] value = [d[0] for d in data]
angle_array = np.array(angle) value_array = np.array(value)
# ### Loading images ### # ### Loading images ###
if horizon > 0: if horizon > 0:
@ -104,7 +127,7 @@ def train(model_type: str, batch_size: int, slide_size: int, img_height: int, im
# slide images vs orders # slide images vs orders
if slide_size > 0: if slide_size > 0:
images = images[:len(images) - slide_size] images = images[:len(images) - slide_size]
angle_array = angle_array[slide_size:] value_array = value_array[slide_size:]
# ### Start training ### # ### Start training ###
from datetime import datetime from datetime import datetime
@ -123,19 +146,28 @@ def train(model_type: str, batch_size: int, slide_size: int, img_height: int, im
model_filepath = '/opt/ml/model/model_other' model_filepath = '/opt/ml/model/model_other'
if model_type == MODEL_CATEGORICAL: if model_type == MODEL_CATEGORICAL:
model_filepath = '/opt/ml/model/model_cat' model_filepath = '/opt/ml/model/model_cat'
angle_cat_array = np.array([linear_bin(float(a)) for a in angle_array]) if record_field == 'angle':
model = default_categorical(input_shape=(img_height - horizon, img_width, img_depth), drop=drop) input_value_array = np.array([linear_bin(float(a)) for a in value_array])
loss = {'angle_out': 'categorical_crossentropy', } output_bin = 15
elif record_field == 'speed_zone':
input_value_array = np.array([linear_bin_speed_zone(a) for a in value_array])
output_bin = 4
model = default_categorical(input_shape=(img_height - horizon, img_width, img_depth), drop=drop,
output_name=output_name, output_bin=output_bin)
loss = {output_name: 'categorical_crossentropy', }
optimizer = 'adam' optimizer = 'adam'
elif model_type == MODEL_LINEAR: elif model_type == MODEL_LINEAR:
model_filepath = '/opt/ml/model/model_lin' model_filepath = '/opt/ml/model/model_lin'
angle_cat_array = np.array([a for a in angle_array]) input_value_array = np.array([a for a in value_array])
model = default_linear(input_shape=(img_height - horizon, img_width, img_depth), drop=drop) model = default_linear(input_shape=(img_height - horizon, img_width, img_depth), drop=drop, output_name=output_name)
loss = tensorflow.keras.losses.Loss('mse') loss = 'mse'
optimizer = 'rmsprop' optimizer = 'rmsprop'
else: else:
raise Exception("invalid model type") raise Exception("invalid model type")
# Display the model's architecture
model.summary()
save_best = callbacks.ModelCheckpoint(model_filepath, monitor='val_loss', verbose=1, save_best = callbacks.ModelCheckpoint(model_filepath, monitor='val_loss', verbose=1,
save_best_only=True, mode='min') save_best_only=True, mode='min')
early_stop = callbacks.EarlyStopping(monitor='val_loss', early_stop = callbacks.EarlyStopping(monitor='val_loss',
@ -148,12 +180,12 @@ def train(model_type: str, batch_size: int, slide_size: int, img_height: int, im
callbacks_list = [save_best, early_stop, logs] callbacks_list = [save_best, early_stop, logs]
model.compile(optimizer=optimizer, model.compile(optimizer=optimizer,
loss=loss, ) loss=loss,)
model.fit({'img_in': images}, {'angle_out': angle_cat_array, }, batch_size=batch_size, model.fit({'img_in': images}, {output_name: input_value_array, }, batch_size=batch_size,
epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list) epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
# Save model for tensorflow using # Save model for tensorflow using
model.save("/opt/ml/model/tfModel", save_format="tf") model.save(f'/opt/ml/model/model_{record_field.replace("_", "")}_{model_type}_{str(img_width)}x{str(img_height)}h{str(horizon)}')
def representative_dataset() -> typing.Generator[typing.List[tf.float32], typing.Any, None]: def representative_dataset() -> typing.Generator[typing.List[tf.float32], typing.Any, None]:
for d in tf.data.Dataset.from_tensor_slices(images).batch(1).take(100): for d in tf.data.Dataset.from_tensor_slices(images).batch(1).take(100):
@ -172,9 +204,9 @@ def train(model_type: str, batch_size: int, slide_size: int, img_height: int, im
tflite_model = converter.convert() tflite_model = converter.convert()
# Save the model. # Save the model.
with open(file=f'/opt/ml/model/model_{model_type}_{img_width}x{img_height}h{horizon}.tflite', with open(f'/opt/ml/model/model_{record_field.replace("_", "")}_{model_type}_{str(img_width)}x{str(img_height)}h{str(horizon)}.tflite',
mode='wb') as f_output: 'wb') as f:
f_output.write(tflite_model) f.write(tflite_model)
def conv2d(filters: float, kernel: typing.Union[int, typing.Tuple[int, int]], strides: typing.Union[int, typing.Tuple[int, int]], layer_num: int, def conv2d(filters: float, kernel: typing.Union[int, typing.Tuple[int, int]], strides: typing.Union[int, typing.Tuple[int, int]], layer_num: int,
@ -222,20 +254,22 @@ def core_cnn_layers(img_in: Input, img_height: int, img_width: int, drop: float,
return x return x
def default_linear(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2) -> Model: def default_linear(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2,
output_name: str ='angle_out') -> Model:
img_in = Input(shape=input_shape, name='img_in') img_in = Input(shape=input_shape, name='img_in')
x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop) x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop)
x = Dense(100, activation='relu', name='dense_1')(x) x = Dense(100, activation='relu', name='dense_1')(x)
x = Dropout(drop)(x) x = Dropout(drop)(x)
x = Dense(50, activation='relu', name='dense_2')(x) x = Dense(50, activation='relu', name='dense_2')(x)
x = Dropout(drop)(x) x = Dropout(drop)(x)
angle_out = Dense(1, activation='linear', name='angle_out')(x) value_out = Dense(1, activation='linear', name=output_name)(x)
model = Model(inputs=[img_in], outputs=[angle_out], name='linear') model = Model(inputs=[img_in], outputs=[value_out], name='linear')
return model return model
def default_categorical(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2) -> Model: def default_categorical(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2,
output_name: str ='angle_out', output_bin: int = 15) -> Model:
img_in = Input(shape=input_shape, name='img_in') img_in = Input(shape=input_shape, name='img_in')
x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop, l4_stride=2) x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop, l4_stride=2)
x = Dense(100, activation='relu', name="dense_1")(x) x = Dense(100, activation='relu', name="dense_1")(x)
@ -243,9 +277,9 @@ def default_categorical(input_shape: typing.Tuple[int, int, int] = (120, 160, 3)
x = Dense(50, activation='relu', name="dense_2")(x) x = Dense(50, activation='relu', name="dense_2")(x)
x = Dropout(drop)(x) x = Dropout(drop)(x)
# Categorical output of the angle into 15 bins # Categorical output of the angle into 15 bins
angle_out = Dense(15, activation='softmax', name='angle_out')(x) value_out = Dense(output_bin, activation='softmax', name=output_name)(x)
model = Model(inputs=[img_in], outputs=[angle_out], name='categorical') model = Model(inputs=[img_in], outputs=[value_out], name='categorical')
return model return model
@ -260,11 +294,13 @@ def main() -> None:
parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--drop", type=float, default=0.2) parser.add_argument("--drop", type=float, default=0.2)
parser.add_argument("--model_type", type=str, default=MODEL_CATEGORICAL) parser.add_argument("--model_type", type=str, default=MODEL_CATEGORICAL)
parser.add_argument("--record_field", type=str, choices=['angle', 'speed_zone'], default='angle')
args = parser.parse_args() args = parser.parse_args()
params = vars(args) params = vars(args)
train( train(
model_type=params["model_type"], model_type=params["model_type"],
record_field=params["record_field"],
batch_size=params["batch_size"], batch_size=params["batch_size"],
slide_size=params["slide_size"], slide_size=params["slide_size"],
img_height=params["img_height"], img_height=params["img_height"],