First impl for satanas car
This commit is contained in:
@@ -16,6 +16,25 @@ from keras.layers import Activation, Dropout, Flatten, Dense
|
||||
from keras import callbacks
|
||||
from tensorflow.python.client import device_lib
|
||||
|
||||
|
||||
def get_data(root_dir, filename):
|
||||
print('load data from file '+ filename)
|
||||
d = json.load(open(os.path.join(root_dir, filename)))
|
||||
if 'pilot/throttle' in d:
|
||||
return [d['user/mode'], d['user/throttle'], d['user/angle'], root_dir, d['cam/image_array'], d['pilot/throttle'], d['pilot/angle']]
|
||||
else:
|
||||
return [d['user/mode'], d['user/throttle'], d['user/angle'], root_dir, d['cam/image_array']]
|
||||
|
||||
|
||||
numbers = re.compile(r'(\d+)')
|
||||
|
||||
|
||||
def unzip_file(root,f):
|
||||
zip_ref = zipfile.ZipFile(os.path.join(root,f), 'r')
|
||||
zip_ref.extractall(root)
|
||||
zip_ref.close()
|
||||
|
||||
|
||||
def train():
|
||||
env = cs.TrainingEnvironment()
|
||||
|
||||
@@ -23,38 +42,24 @@ def train():
|
||||
os.system('mkdir -p logs')
|
||||
|
||||
# ### Loading the files ###
|
||||
# ** You need to copy all your files to the directory where you are runing this notebook into a folder named "data" **
|
||||
# ** You need to copy all your files to the directory where you are runing this notebook **
|
||||
# ** into a folder named "data" **
|
||||
|
||||
numbers = re.compile(r'(\d+)')
|
||||
data = []
|
||||
def get_data(root,f):
|
||||
d = json.load(open(os.path.join(root,f)))
|
||||
if ('pilot/throttle' in d):
|
||||
return [d['user/mode'],d['user/throttle'],d['user/angle'],root,d['cam/image_array'],d['pilot/throttle'],d['pilot/angle']]
|
||||
else:
|
||||
return [d['user/mode'],d['user/throttle'],d['user/angle'],root,d['cam/image_array']]
|
||||
def numericalSort(value):
|
||||
parts = numbers.split(value)
|
||||
parts[1::2] = map(int, parts[1::2])
|
||||
return parts
|
||||
def unzip_file(root,f):
|
||||
zip_ref = zipfile.ZipFile(os.path.join(root,f), 'r')
|
||||
zip_ref.extractall(root)
|
||||
zip_ref.close()
|
||||
|
||||
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
|
||||
for f in files:
|
||||
for f in files:
|
||||
if f.endswith('.zip'):
|
||||
unzip_file(root, f)
|
||||
|
||||
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
|
||||
data.extend([get_data(root,f) for f in sorted(files, key=numericalSort) if f.startswith('record') and f.endswith('.json')])
|
||||
data.extend([get_data(root,f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
|
||||
|
||||
# Normalize / correct data
|
||||
data = [d for d in data if d[1] > 0.1]
|
||||
for d in data:
|
||||
if d[1] < 0.2:
|
||||
d[1] = 0.2
|
||||
#data = [d for d in data if d[1] > 0.1]
|
||||
#for d in data:
|
||||
# if d[1] < 0.2:
|
||||
# d[1] = 0.2
|
||||
|
||||
# ### Loading throttle and angle ###
|
||||
|
||||
@@ -62,7 +67,8 @@ def train():
|
||||
throttle = [d[1] for d in data]
|
||||
angle_array = np.array(angle)
|
||||
throttle_array = np.array(throttle)
|
||||
if (len(data[0]) > 5):
|
||||
|
||||
if len(data[0]) > 5:
|
||||
pilot_angle = [d[6] for d in data]
|
||||
pilot_throttle = [d[5] for d in data]
|
||||
pilot_angle_array = np.array(pilot_angle)
|
||||
@@ -71,7 +77,6 @@ def train():
|
||||
pilot_angle = []
|
||||
pilot_throttle = []
|
||||
|
||||
|
||||
# ### Loading images ###
|
||||
images = np.array([img_to_array(load_img(os.path.join(d[3],d[4]))) for d in data],'f')
|
||||
|
||||
@@ -91,12 +96,12 @@ def train():
|
||||
|
||||
logs = callbacks.TensorBoard(log_dir='logs', histogram_freq=0, write_graph=True, write_images=True)
|
||||
save_best = callbacks.ModelCheckpoint('/opt/ml/model/model_cat', monitor='angle_out_loss', verbose=1, save_best_only=True, mode='min')
|
||||
early_stop = callbacks.EarlyStopping(monitor='angle_out_loss',
|
||||
min_delta=.0005,
|
||||
patience=10,
|
||||
verbose=1,
|
||||
early_stop = callbacks.EarlyStopping(monitor='angle_out_loss',
|
||||
min_delta=.0005,
|
||||
patience=10,
|
||||
verbose=1,
|
||||
mode='auto')
|
||||
img_in = Input(shape=(120, 160, 3), name='img_in') # First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
img_in = Input(shape=(128, 160, 3), name='img_in') # First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
x = img_in
|
||||
x = Convolution2D(24, (5,5), strides=(2,2), activation='relu')(x) # 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
|
||||
x = Convolution2D(32, (5,5), strides=(2,2), activation='relu')(x) # 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
|
||||
@@ -120,7 +125,7 @@ def train():
|
||||
angle_cat_array = np.array([linear_bin(a) for a in angle_array])
|
||||
model = Model(inputs=[img_in], outputs=[angle_out, throttle_out])
|
||||
model.compile(optimizer='adam',
|
||||
loss={'angle_out': 'categorical_crossentropy',
|
||||
loss={'angle_out': 'categorical_crossentropy',
|
||||
'throttle_out': 'mean_absolute_error'},
|
||||
loss_weights={'angle_out': 0.9, 'throttle_out': .001})
|
||||
model.fit({'img_in':images},{'angle_out': angle_cat_array, 'throttle_out': throttle_array}, batch_size=32, epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
|
||||
|
Reference in New Issue
Block a user