robocar-training/src/tf_container/train_entry_point.py

135 lines
5.0 KiB
Python

#!/usr/bin/env python3
import os
import container_support as cs
import json
import numpy as np
import re
import tensorflow as tf
import zipfile
from keras import backend as K
from keras import callbacks
from keras.layers import Convolution2D
from keras.layers import Dropout, Flatten, Dense
from keras.layers import Input
from keras.models import Model
from keras.preprocessing.image import load_img, img_to_array
from tensorflow.python.client import device_lib
def get_data(root_dir, filename):
print('load data from file ' + filename)
d = json.load(open(os.path.join(root_dir, filename)))
return [d['user/angle'], root_dir, d['cam/image_array']]
numbers = re.compile(r'(\d+)')
def unzip_file(root, f):
zip_ref = zipfile.ZipFile(os.path.join(root, f), 'r')
zip_ref.extractall(root)
zip_ref.close()
def train():
env = cs.TrainingEnvironment()
print(device_lib.list_local_devices())
os.system('mkdir -p logs')
# ### Loading the files ###
# ** You need to copy all your files to the directory where you are runing this notebook **
# ** into a folder named "data" **
data = []
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
for f in files:
if f.endswith('.zip'):
unzip_file(root, f)
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
data.extend(
[get_data(root, f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
# ### Loading throttle and angle ###
angle = [d[0] for d in data]
angle_array = np.array(angle)
# ### Loading images ###
images = np.array([img_to_array(load_img(os.path.join(d[1], d[2]))) for d in data], 'f')
# slide images vs orders
if env.hyperparameters.get('with_slide', False):
images = images[:len(images) - 2]
angle_array = angle_array[2:]
# ### Start training ###
def linear_bin(a):
a = a + 1
b = round(a / (2 / 14))
arr = np.zeros(15)
arr[int(b)] = 1
return arr
logs = callbacks.TensorBoard(log_dir='logs', histogram_freq=0, write_graph=True, write_images=True)
save_best = callbacks.ModelCheckpoint('/opt/ml/model/model_cat', monitor='val_loss', verbose=1,
save_best_only=True, mode='min')
early_stop = callbacks.EarlyStopping(monitor='val_loss',
min_delta=.0005,
patience=10,
verbose=1,
mode='auto')
# Only for export model to tensorflow
sess = tf.Session()
K.set_session(sess)
# First layer, input layer, Shape comes from camera.py resolution, RGB
img_in = Input(shape=(128, 160, 3),
name='img_in')
x = img_in
# 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
x = Convolution2D(24, (5, 5), strides=(2, 2), activation='relu')(x)
# 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
x = Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')(x)
# 64 features, 5px5p kernal window, 2wx2h stride, relu
x = Convolution2D(64, (5, 5), strides=(2, 2), activation='relu')(x)
# 64 features, 3px3p kernal window, 2wx2h stride, relu
x = Convolution2D(64, (3, 3), strides=(2, 2), activation='relu')(x)
# 64 features, 3px3p kernal window, 1wx1h stride, relu
x = Convolution2D(64, (3, 3), strides=(1, 1), activation='relu')(x)
# Possibly add MaxPooling (will make it less sensitive to position in image). Camera angle fixed, so may not to be needed
x = Flatten(name='flattened')(x) # Flatten to 1D (Fully connected)
x = Dense(100, activation='relu')(x) # Classify the data into 100 features, make all negatives 0
x = Dropout(.1)(x)
x = Dense(50, activation='relu')(x)
# Randomly drop out 10% of the neurons (Prevent overfitting)
x = Dropout(.1)(x)
# categorical output of the angle
callbacks_list = [save_best, early_stop, logs]
# Connect every input with every output and output 15 hidden units. Use Softmax to give percentage.
# 15 categories and find best one based off percentage 0.0-1.0
angle_out = Dense(15, activation='softmax', name='angle_out')(x)
angle_cat_array = np.array([linear_bin(a) for a in angle_array])
model = Model(inputs=[img_in], outputs=[angle_out])
model.compile(optimizer='adam',
loss={'angle_out': 'categorical_crossentropy', },
loss_weights={'angle_out': 0.9 })
model.fit({'img_in': images}, {'angle_out': angle_cat_array, }, batch_size=32,
epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
# Save model for tensorflow using
builder = tf.saved_model.builder.SavedModelBuilder("/opt/ml/model/tfModel")
# Tag the model, required for Go
builder.add_meta_graph_and_variables(sess, ["myTag"])
builder.save()
sess.close()