robocar-training/tf_container/train.py

280 lines
10 KiB
Python

#!/usr/bin/env python3
import os
# import container_support as cs
import argparse
import json
import pathlib
import typing
import numpy as np
import re
import tensorflow as tf
import zipfile
import tensorflow.keras.losses
# from tensorflow.keras import backend as K
from tensorflow.keras import callbacks
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Dropout, Flatten, Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Layer
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from numpy import typing as npt
MODEL_CATEGORICAL = "categorical"
MODEL_LINEAR = "linear"
def linear_bin(a: float, N: int = 15, offset: int = 1, R: float = 2.0) -> npt.NDArray[np.float64]:
"""
create a bin of length N
map val A to range R
offset one hot bin by offset, commonly R/2
"""
a = a + offset
b = round(a / (R / (N - offset)))
arr = np.zeros(N)
b = clamp(b, 0, N - 1)
arr[int(b)] = 1
return arr
def clamp(n: int, min: int, max: int) -> int:
if n <= min:
return min
if n >= max:
return max
return n
def get_data(root_dir: pathlib.Path, filename: str) -> typing.List[typing.Any]:
# print('load data from file ' + filename)
d = json.load(open(os.path.join(root_dir, filename)))
return [(d['user/angle']), root_dir, d['cam/image_array']]
numbers = re.compile(r'(\d+)')
def unzip_file(root: pathlib.Path, f: str) -> None:
zip_ref = zipfile.ZipFile(os.path.join(root, f), 'r')
zip_ref.extractall(root)
zip_ref.close()
def train(model_type: str, batch_size: int, slide_size: int, img_height: int, img_width: int, img_depth: int,
horizon: int, drop: float) -> None:
# env = cs.TrainingEnvironment()
os.system('mkdir -p logs')
# ### Loading the files ###
# ** You need to copy all your files to the directory where you are runing this notebook **
# ** into a folder named "data" **
data = []
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
for f in files:
if f.endswith('.zip'):
unzip_file(pathlib.Path(root), f)
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
data.extend(
[get_data(pathlib.Path(root), f) for f in sorted(files, key=str.lower) if
f.startswith('record') and f.endswith('.json')])
# ### Loading throttle and angle ###
angle = [d[0] for d in data]
angle_array = np.array(angle)
# ### Loading images ###
if horizon > 0:
images = np.array(
[img_to_array(load_img(os.path.join(d[1], d[2])).crop((0, horizon, img_width, img_height))) for d in data],
'f')
else:
images = np.array([img_to_array(load_img(os.path.join(d[1], d[2]))) for d in data], 'f')
# slide images vs orders
if slide_size > 0:
images = images[:len(images) - slide_size]
angle_array = angle_array[slide_size:]
# ### Start training ###
from datetime import datetime
logdir = '/opt/ml/model/logs/' + datetime.now().strftime("%Y%m%d-%H%M%S")
logs = callbacks.TensorBoard(log_dir=logdir, histogram_freq=0, write_graph=True, write_images=True)
# Creates a file writer for the log directory.
# file_writer = tf.summary.create_file_writer(logdir)
# Using the file writer, log the reshaped image.
# with file_writer.as_default():
# # Don't forget to reshape.
# imgs = np.reshape(images[0:25], (-1, img_height, img_width, img_depth))
# tf.summary.image("25 training data examples", imgs, max_outputs=25, step=0)
model_filepath = '/opt/ml/model/model_other'
if model_type == MODEL_CATEGORICAL:
model_filepath = '/opt/ml/model/model_cat'
angle_cat_array = np.array([linear_bin(float(a)) for a in angle_array])
model = default_categorical(input_shape=(img_height - horizon, img_width, img_depth), drop=drop)
loss = {'angle_out': 'categorical_crossentropy', }
optimizer = 'adam'
elif model_type == MODEL_LINEAR:
model_filepath = '/opt/ml/model/model_lin'
angle_cat_array = np.array([a for a in angle_array])
model = default_linear(input_shape=(img_height - horizon, img_width, img_depth), drop=drop)
loss = tensorflow.keras.losses.Loss('mse')
optimizer = 'rmsprop'
else:
raise Exception("invalid model type")
save_best = callbacks.ModelCheckpoint(model_filepath, monitor='val_loss', verbose=1,
save_best_only=True, mode='min')
early_stop = callbacks.EarlyStopping(monitor='val_loss',
min_delta=.0005,
patience=5,
verbose=1,
mode='auto')
# categorical output of the angle
callbacks_list = [save_best, early_stop, logs]
model.compile(optimizer=optimizer,
loss=loss, )
model.fit({'img_in': images}, {'angle_out': angle_cat_array, }, batch_size=batch_size,
epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
# Save model for tensorflow using
model.save("/opt/ml/model/tfModel", save_format="tf")
def representative_dataset() -> typing.Generator[typing.List[tf.float32], typing.Any, None]:
for d in tf.data.Dataset.from_tensor_slices(images).batch(1).take(100):
yield [tf.dtypes.cast(d, tf.float32)]
converter = tf.lite.TFLiteConverter.from_keras_model(model)
# full quantization for edgeTpu
# https://www.tensorflow.org/lite/performance/post_training_quantization#full_integer_quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
tflite_model = converter.convert()
# Save the model.
with open(file=f'/opt/ml/model/model_{model_type}_{img_width}x{img_height}h{horizon}.tflite',
mode='wb') as f_output:
f_output.write(tflite_model)
def conv2d(filters: float, kernel: typing.Union[int, typing.Tuple[int, int]], strides: typing.Union[int, typing.Tuple[int, int]], layer_num: int,
activation: str = 'relu') -> Conv2D:
"""
Helper function to create a standard valid-padded convolutional layer
with square kernel and strides and unified naming convention
:param filters: channel dimension of the layer
:param kernel: creates (kernel, kernel) kernel matrix dimension
:param strides: creates (strides, strides) stride
:param layer_num: used in labelling the layer
:param activation: activation, defaults to relu
:return: tf.keras Convolution2D layer
"""
return Conv2D(filters=filters,
kernel_size=(kernel, kernel),
strides=(strides, strides),
activation=activation,
name='conv2d_' + str(layer_num))
def core_cnn_layers(img_in: Input, img_height: int, img_width: int, drop: float, l4_stride: int = 1) -> Layer:
"""
Returns the core CNN layers that are shared among the different models,
like linear, imu, behavioural
:param img_width: image width
:param img_height: image height
:param img_in: input layer of network
:param drop: dropout rate
:param l4_stride: 4-th layer stride, default 1
:return: stack of CNN layers
"""
x = img_in
x = conv2d(img_height / 5, 5, 2, 1)(x)
x = Dropout(drop)(x)
x = conv2d(img_width / 5, 5, 2, 2)(x)
x = Dropout(drop)(x)
x = conv2d(64, 5, 2, 3)(x)
x = Dropout(drop)(x)
x = conv2d(64, 3, l4_stride, 4)(x)
x = Dropout(drop)(x)
x = conv2d(64, 3, 1, 5)(x)
x = Dropout(drop)(x)
x = Flatten(name='flattened')(x)
return x
def default_linear(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2) -> Model:
img_in = Input(shape=input_shape, name='img_in')
x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop)
x = Dense(100, activation='relu', name='dense_1')(x)
x = Dropout(drop)(x)
x = Dense(50, activation='relu', name='dense_2')(x)
x = Dropout(drop)(x)
angle_out = Dense(1, activation='linear', name='angle_out')(x)
model = Model(inputs=[img_in], outputs=[angle_out], name='linear')
return model
def default_categorical(input_shape: typing.Tuple[int, int, int] = (120, 160, 3), drop: float = 0.2) -> Model:
img_in = Input(shape=input_shape, name='img_in')
x = core_cnn_layers(img_in, img_width=input_shape[1], img_height=input_shape[0], drop=drop, l4_stride=2)
x = Dense(100, activation='relu', name="dense_1")(x)
x = Dropout(drop)(x)
x = Dense(50, activation='relu', name="dense_2")(x)
x = Dropout(drop)(x)
# Categorical output of the angle into 15 bins
angle_out = Dense(15, activation='softmax', name='angle_out')(x)
model = Model(inputs=[img_in], outputs=[angle_out], name='categorical')
return model
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--slide_size", type=int, default=0)
parser.add_argument("--img_height", type=int, default=120)
parser.add_argument("--img_width", type=int, default=160)
parser.add_argument("--img_depth", type=int, default=3)
parser.add_argument("--horizon", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--drop", type=float, default=0.2)
parser.add_argument("--model_type", type=str, default=MODEL_CATEGORICAL)
args = parser.parse_args()
params = vars(args)
train(
model_type=params["model_type"],
batch_size=params["batch_size"],
slide_size=params["slide_size"],
img_height=params["img_height"],
img_width=params["img_width"],
img_depth=params["img_depth"],
horizon=params["horizon"],
drop=params["drop"],
)
if __name__ == "__main__":
main()