robocar-oak-camera/east.py

229 lines
7.9 KiB
Python
Raw Normal View History

2022-08-10 10:28:41 +00:00
import cv2
import depthai
import numpy as np
_conf_threshold = 0.5
def get_cv_rotated_rect(bbox, angle):
x0, y0, x1, y1 = bbox
width = abs(x0 - x1)
height = abs(y0 - y1)
x = x0 + width * 0.5
y = y0 + height * 0.5
return ([x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle))
def rotated_Rectangle(bbox, angle):
X0, Y0, X1, Y1 = bbox
width = abs(X0 - X1)
height = abs(Y0 - Y1)
x = int(X0 + width * 0.5)
y = int(Y0 + height * 0.5)
pt1_1 = (int(x + width / 2), int(y + height / 2))
pt2_1 = (int(x + width / 2), int(y - height / 2))
pt3_1 = (int(x - width / 2), int(y - height / 2))
pt4_1 = (int(x - width / 2), int(y + height / 2))
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
[0, 0, 1]])
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
return points
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return [], []
# if the bounding boxes are integers, convert them to floats -- this
# is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and grab the indexes to sort
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = y2
# if probabilities are provided, sort on them instead
if probs is not None:
idxs = probs
# sort the indexes
idxs = np.argsort(idxs)
# keep looping while some indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick].astype("int"), angles[pick]
def decode_predictions(scores, geometry1, geometry2):
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
angles = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the
# geometrical data used to derive potential bounding box
# coordinates that surround text
scoresData = scores[0, 0, y]
xData0 = geometry1[0, 0, y]
xData1 = geometry1[0, 1, y]
xData2 = geometry1[0, 2, y]
xData3 = geometry1[0, 3, y]
anglesData = geometry2[0, 0, y]
# loop over the number of columns
for x in range(0, numCols):
# if our score does not have sufficient probability,
# ignore it
if scoresData[x] < _conf_threshold:
continue
# compute the offset factor as our resulting feature
# maps will be 4x smaller than the input image
(offsetX, offsetY) = (x * 4.0, y * 4.0)
# extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# use the geometry volume to derive the width and height
# of the bounding box
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# add the bounding box coordinates and probability score
# to our respective lists
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
angles.append(angle)
# return a tuple of the bounding boxes and associated confidences
return (rects, confidences, angles)
def decode_east(nnet_packet, **kwargs):
scores = nnet_packet.get_tensor(0)
geometry1 = nnet_packet.get_tensor(1)
geometry2 = nnet_packet.get_tensor(2)
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
)
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
boxesangles = (boxes, angles)
return boxesangles
def show_east(boxesangles, frame, **kwargs):
bboxes = boxesangles[0]
angles = boxesangles[1]
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
width = abs(X0 - X1)
height = abs(Y0 - Y1)
cX = int(X0 + width * 0.5)
cY = int(Y0 + height * 0.5)
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
return frame
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped