This commit is contained in:
Cyrille Nofficial 2022-08-10 12:28:41 +02:00
parent 2c9c7d9078
commit 0467ab780c
6 changed files with 1019 additions and 1 deletions

View File

@ -10,6 +10,17 @@ import cv2
logger = logging.getLogger(__name__)
def to_tensor_result(packet):
return {
name: np.array(packet.getLayerFp16(name))
for name in [tensor.name for tensor in packet.getRaw().tensors]
}
def to_planar(frame):
return frame.transpose(2, 0, 1).flatten()
class FramePublisher:
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int):
self._mqtt_client = mqtt_client
@ -22,6 +33,72 @@ class FramePublisher:
logger.info("configure pipeline")
pipeline = dai.Pipeline()
version = "2021.2"
pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2)
# colorCam = pipeline.create(dai.node.ColorCamera)
# colorCam.setPreviewSize(256, 256)
# colorCam.setVideoSize(1024, 1024) # 4 times larger in both axis
# colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
# colorCam.setInterleaved(False)
# colorCam.setBoardSocket(dai.CameraBoardSocket.RGB)
# colorCam.setFps(10)
#
# controlIn = pipeline.create(dai.node.XLinkIn)
# controlIn.setStreamName('control')
# controlIn.out.link(colorCam.inputControl)
#
# cam_xout = pipeline.create(dai.node.XLinkOut)
# cam_xout.setStreamName('video')
# colorCam.video.link(cam_xout.input)
# ---------------------------------------
# 1st stage NN - text-detection
# ---------------------------------------
nn = pipeline.create(dai.node.NeuralNetwork)
nn.setBlobPath(
blobconverter.from_zoo(name="east_text_detection_256x256", zoo_type="depthai", shaves=6, version=version))
colorCam.preview.link(nn.input)
nn_xout = pipeline.create(dai.node.XLinkOut)
nn_xout.setStreamName('detections')
nn.out.link(nn_xout.input)
# ---------------------------------------
# 2nd stage NN - text-recognition-0012
# ---------------------------------------
manip = pipeline.create(dai.node.ImageManip)
manip.setWaitForConfigInput(True)
manip_img = pipeline.create(dai.node.XLinkIn)
manip_img.setStreamName('manip_img')
manip_img.out.link(manip.inputImage)
manip_cfg = pipeline.create(dai.node.XLinkIn)
manip_cfg.setStreamName('manip_cfg')
manip_cfg.out.link(manip.inputConfig)
manip_xout = pipeline.create(dai.node.XLinkOut)
manip_xout.setStreamName('manip_out')
nn2 = pipeline.create(dai.node.NeuralNetwork)
nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version))
nn2.setNumInferenceThreads(2)
manip.out.link(nn2.input)
manip.out.link(manip_xout.input)
nn2_xout = pipeline.create(dai.node.XLinkOut)
nn2_xout.setStreamName("recognitions")
nn2.out.link(nn2_xout.input)
cam_rgb = pipeline.create(dai.node.ColorCamera)
xout_rgb = pipeline.create(dai.node.XLinkOut)
@ -40,6 +117,150 @@ class FramePublisher:
return pipeline
def run(self):
with dai.Device(self._pipeline) as device:
q_vid = device.getOutputQueue("video", 4, blocking=False)
# This should be set to block, but would get to some extreme queuing/latency!
q_det = device.getOutputQueue("detections", 4, blocking=False)
q_rec = device.getOutputQueue("recognitions", 4, blocking=True)
q_manip_img = device.getInputQueue("manip_img")
q_manip_cfg = device.getInputQueue("manip_cfg")
q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False)
controlQueue = device.getInputQueue('control')
frame = None
cropped_stacked = None
rotated_rectangles = []
rec_pushed = 0
rec_received = 0
host_sync = HostSeqSync()
characters = '0123456789abcdefghijklmnopqrstuvwxyz#'
codec = CTCCodec(characters)
ctrl = dai.CameraControl()
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO)
ctrl.setAutoFocusTrigger()
controlQueue.send(ctrl)
while True:
vid_in = q_vid.tryGet()
if vid_in is not None:
host_sync.add_msg(vid_in)
# Multiple recognition results may be available, read until queue is empty
while True:
in_rec = q_rec.tryGet()
if in_rec is None:
break
rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30, 1, 37)
decoded_text = codec.decode(rec_data)[0]
pos = rotated_rectangles[rec_received]
print("{:2}: {:20}".format(rec_received, decoded_text),
"center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format(
int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2]))
# Draw the text on the right side of 'cropped_stacked' - placeholder
if cropped_stacked is not None:
cv2.putText(cropped_stacked, decoded_text,
(120 + 10, 32 * rec_received + 24),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
cv2.imshow('cropped_stacked', cropped_stacked)
rec_received += 1
if cv2.waitKey(1) == ord('q'):
break
if rec_received >= rec_pushed:
in_det = q_det.tryGet()
if in_det is not None:
frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy()
scores, geom1, geom2 = to_tensor_result(in_det).values()
scores = np.reshape(scores, (1, 1, 64, 64))
geom1 = np.reshape(geom1, (1, 4, 64, 64))
geom2 = np.reshape(geom2, (1, 1, 64, 64))
bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2)
boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
rotated_rectangles = [
east.get_cv_rotated_rect(bbox, angle * -1)
for (bbox, angle) in zip(boxes, angles)
]
rec_received = 0
rec_pushed = len(rotated_rectangles)
if rec_pushed:
print("====== Pushing for recognition, count:", rec_pushed)
cropped_stacked = None
for idx, rotated_rect in enumerate(rotated_rectangles):
# Detections are done on 256x256 frames, we are sending back 1024x1024
# That's why we multiply center and size values by 4
rotated_rect[0][0] = rotated_rect[0][0] * 4
rotated_rect[0][1] = rotated_rect[0][1] * 4
rotated_rect[1][0] = rotated_rect[1][0] * 4
rotated_rect[1][1] = rotated_rect[1][1] * 4
# Draw detection crop area on input frame
points = np.int0(cv2.boxPoints(rotated_rect))
print(rotated_rect)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1,
lineType=cv2.LINE_8)
# TODO make it work taking args like in OpenCV:
# rr = ((256, 256), (128, 64), 30)
rr = dai.RotatedRect()
rr.center.x = rotated_rect[0][0]
rr.center.y = rotated_rect[0][1]
rr.size.width = rotated_rect[1][0]
rr.size.height = rotated_rect[1][1]
rr.angle = rotated_rect[2]
cfg = dai.ImageManipConfig()
cfg.setCropRotatedRect(rr, False)
cfg.setResize(120, 32)
# Send frame and config to device
if idx == 0:
w, h, c = frame.shape
imgFrame = dai.ImgFrame()
imgFrame.setData(to_planar(frame))
imgFrame.setType(dai.ImgFrame.Type.BGR888p)
imgFrame.setWidth(w)
imgFrame.setHeight(h)
q_manip_img.send(imgFrame)
else:
cfg.setReusePreviousImage(True)
q_manip_cfg.send(cfg)
# Get manipulated image from the device
transformed = q_manip_out.get().getCvFrame()
rec_placeholder_img = np.zeros((32, 200, 3), np.uint8)
transformed = np.hstack((transformed, rec_placeholder_img))
if cropped_stacked is None:
cropped_stacked = transformed
else:
cropped_stacked = np.vstack((cropped_stacked, transformed))
if cropped_stacked is not None:
cv2.imshow('cropped_stacked', cropped_stacked)
if frame is not None:
cv2.imshow('frame', frame)
key = cv2.waitKey(1)
if key == ord('q'):
break
elif key == ord('t'):
print("Autofocus trigger (and disable continuous)")
ctrl = dai.CameraControl()
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO)
ctrl.setAutoFocusTrigger()
controlQueue.send(ctrl)
# Connect to device and start pipeline
with dai.Device(self._pipeline) as device:
logger.info('MxId: %s', device.getDeviceInfo().getMxId())

232
camera/east.py Normal file
View File

@ -0,0 +1,232 @@
import cv2
import depthai
import numpy as np
_conf_threshold = 0.5
def get_cv_rotated_rect(bbox, angle):
x0, y0, x1, y1 = bbox
width = abs(x0 - x1)
height = abs(y0 - y1)
x = x0 + width * 0.5
y = y0 + height * 0.5
return [x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle)
def rotated_Rectangle(bbox, angle):
X0, Y0, X1, Y1 = bbox
width = abs(X0 - X1)
height = abs(Y0 - Y1)
x = int(X0 + width * 0.5)
y = int(Y0 + height * 0.5)
pt1_1 = (int(x + width / 2), int(y + height / 2))
pt2_1 = (int(x + width / 2), int(y - height / 2))
pt3_1 = (int(x - width / 2), int(y - height / 2))
pt4_1 = (int(x - width / 2), int(y + height / 2))
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
[0, 0, 1]])
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
return points
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return [], []
# if the bounding boxes are integers, convert them to floats -- this
# is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and grab the indexes to sort
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = y2
# if probabilities are provided, sort on them instead
if probs is not None:
idxs = probs
# sort the indexes
idxs = np.argsort(idxs)
# keep looping while some indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick].astype("int"), angles[pick]
def decode_predictions(scores, geometry1, geometry2):
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
angles = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the
# geometrical data used to derive potential bounding box
# coordinates that surround text
scoresData = scores[0, 0, y]
xData0 = geometry1[0, 0, y]
xData1 = geometry1[0, 1, y]
xData2 = geometry1[0, 2, y]
xData3 = geometry1[0, 3, y]
anglesData = geometry2[0, 0, y]
# loop over the number of columns
for x in range(0, numCols):
# if our score does not have sufficient probability,
# ignore it
if scoresData[x] < _conf_threshold:
continue
# compute the offset factor as our resulting feature
# maps will be 4x smaller than the input image
(offsetX, offsetY) = (x * 4.0, y * 4.0)
# extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# use the geometry volume to derive the width and height
# of the bounding box
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# add the bounding box coordinates and probability score
# to our respective lists
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
angles.append(angle)
# return a tuple of the bounding boxes and associated confidences
return (rects, confidences, angles)
def decode_east(nnet_packet, **kwargs):
scores = nnet_packet.get_tensor(0)
geometry1 = nnet_packet.get_tensor(1)
geometry2 = nnet_packet.get_tensor(2)
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
)
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
boxesangles = (boxes, angles)
return boxesangles
def show_east(boxesangles, frame, **kwargs):
bboxes = boxesangles[0]
angles = boxesangles[1]
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
width = abs(X0 - X1)
height = abs(Y0 - Y1)
cX = int(X0 + width * 0.5)
cY = int(Y0 + height * 0.5)
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
return frame
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped

61
camera/text.py Normal file
View File

@ -0,0 +1,61 @@
class HostSeqSync:
def __init__(self):
self.imfFrames = []
def add_msg(self, msg):
self.imfFrames.append(msg)
def get_msg(self, target_seq):
for i, imgFrame in enumerate(self.imfFrames):
if target_seq == imgFrame.getSequenceNum():
self.imfFrames = self.imfFrames[i:]
break
return self.imfFrames[0]
class CTCCodec(object):
""" Convert between text-label and text-index """
def __init__(self, characters):
# characters (str): set of the possible characters.
dict_character = list(characters)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i + 1
self.characters = dict_character
# print(self.characters)
# input()
def decode(self, preds):
""" convert text-index into text-label. """
texts = []
index = 0
# Select max probabilty (greedy decoding) then decode index to character
preds = preds.astype(np.float16)
preds_index = np.argmax(preds, 2)
preds_index = preds_index.transpose(1, 0)
preds_index_reshape = preds_index.reshape(-1)
preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0])
for l in preds_sizes:
t = preds_index_reshape[index:index + l]
# NOTE: t might be zero size
if t.shape[0] == 0:
continue
char_list = []
for i in range(l):
# removing repeated characters and blank.
if not (i > 0 and t[i - 1] == t[i]):
if self.characters[t[i]] != '#':
char_list.append(self.characters[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts

229
east.py Normal file
View File

@ -0,0 +1,229 @@
import cv2
import depthai
import numpy as np
_conf_threshold = 0.5
def get_cv_rotated_rect(bbox, angle):
x0, y0, x1, y1 = bbox
width = abs(x0 - x1)
height = abs(y0 - y1)
x = x0 + width * 0.5
y = y0 + height * 0.5
return ([x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle))
def rotated_Rectangle(bbox, angle):
X0, Y0, X1, Y1 = bbox
width = abs(X0 - X1)
height = abs(Y0 - Y1)
x = int(X0 + width * 0.5)
y = int(Y0 + height * 0.5)
pt1_1 = (int(x + width / 2), int(y + height / 2))
pt2_1 = (int(x + width / 2), int(y - height / 2))
pt3_1 = (int(x - width / 2), int(y - height / 2))
pt4_1 = (int(x - width / 2), int(y + height / 2))
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
[0, 0, 1]])
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
return points
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return [], []
# if the bounding boxes are integers, convert them to floats -- this
# is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and grab the indexes to sort
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = y2
# if probabilities are provided, sort on them instead
if probs is not None:
idxs = probs
# sort the indexes
idxs = np.argsort(idxs)
# keep looping while some indexes still remain in the indexes list
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked
return boxes[pick].astype("int"), angles[pick]
def decode_predictions(scores, geometry1, geometry2):
# grab the number of rows and columns from the scores volume, then
# initialize our set of bounding box rectangles and corresponding
# confidence scores
(numRows, numCols) = scores.shape[2:4]
rects = []
confidences = []
angles = []
# loop over the number of rows
for y in range(0, numRows):
# extract the scores (probabilities), followed by the
# geometrical data used to derive potential bounding box
# coordinates that surround text
scoresData = scores[0, 0, y]
xData0 = geometry1[0, 0, y]
xData1 = geometry1[0, 1, y]
xData2 = geometry1[0, 2, y]
xData3 = geometry1[0, 3, y]
anglesData = geometry2[0, 0, y]
# loop over the number of columns
for x in range(0, numCols):
# if our score does not have sufficient probability,
# ignore it
if scoresData[x] < _conf_threshold:
continue
# compute the offset factor as our resulting feature
# maps will be 4x smaller than the input image
(offsetX, offsetY) = (x * 4.0, y * 4.0)
# extract the rotation angle for the prediction and
# then compute the sin and cosine
angle = anglesData[x]
cos = np.cos(angle)
sin = np.sin(angle)
# use the geometry volume to derive the width and height
# of the bounding box
h = xData0[x] + xData2[x]
w = xData1[x] + xData3[x]
# compute both the starting and ending (x, y)-coordinates
# for the text prediction bounding box
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
startX = int(endX - w)
startY = int(endY - h)
# add the bounding box coordinates and probability score
# to our respective lists
rects.append((startX, startY, endX, endY))
confidences.append(scoresData[x])
angles.append(angle)
# return a tuple of the bounding boxes and associated confidences
return (rects, confidences, angles)
def decode_east(nnet_packet, **kwargs):
scores = nnet_packet.get_tensor(0)
geometry1 = nnet_packet.get_tensor(1)
geometry2 = nnet_packet.get_tensor(2)
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
)
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
boxesangles = (boxes, angles)
return boxesangles
def show_east(boxesangles, frame, **kwargs):
bboxes = boxesangles[0]
angles = boxesangles[1]
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
width = abs(X0 - X1)
height = abs(Y0 - Y1)
cX = int(X0 + width * 0.5)
cY = int(Y0 + height * 0.5)
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
return frame
def order_points(pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped

274
main.py Normal file
View File

@ -0,0 +1,274 @@
#!/usr/bin/env python3
from pathlib import Path
import cv2
import numpy as np
import depthai as dai
import east
import blobconverter
class HostSeqSync:
def __init__(self):
self.imfFrames = []
def add_msg(self, msg):
self.imfFrames.append(msg)
def get_msg(self, target_seq):
for i, imgFrame in enumerate(self.imfFrames):
if target_seq == imgFrame.getSequenceNum():
self.imfFrames = self.imfFrames[i:]
break
return self.imfFrames[0]
pipeline = dai.Pipeline()
version = "2021.2"
pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2)
colorCam = pipeline.create(dai.node.ColorCamera)
colorCam.setPreviewSize(256, 256)
colorCam.setVideoSize(1024, 1024) # 4 times larger in both axis
colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
colorCam.setInterleaved(False)
colorCam.setBoardSocket(dai.CameraBoardSocket.RGB)
colorCam.setFps(10)
controlIn = pipeline.create(dai.node.XLinkIn)
controlIn.setStreamName('control')
controlIn.out.link(colorCam.inputControl)
cam_xout = pipeline.create(dai.node.XLinkOut)
cam_xout.setStreamName('video')
colorCam.video.link(cam_xout.input)
# ---------------------------------------
# 1st stage NN - text-detection
# ---------------------------------------
nn = pipeline.create(dai.node.NeuralNetwork)
nn.setBlobPath(blobconverter.from_zoo(name="east_text_detection_256x256",zoo_type="depthai",shaves=6, version=version))
colorCam.preview.link(nn.input)
nn_xout = pipeline.create(dai.node.XLinkOut)
nn_xout.setStreamName('detections')
nn.out.link(nn_xout.input)
# ---------------------------------------
# 2nd stage NN - text-recognition-0012
# ---------------------------------------
manip = pipeline.create(dai.node.ImageManip)
manip.setWaitForConfigInput(True)
manip_img = pipeline.create(dai.node.XLinkIn)
manip_img.setStreamName('manip_img')
manip_img.out.link(manip.inputImage)
manip_cfg = pipeline.create(dai.node.XLinkIn)
manip_cfg.setStreamName('manip_cfg')
manip_cfg.out.link(manip.inputConfig)
manip_xout = pipeline.create(dai.node.XLinkOut)
manip_xout.setStreamName('manip_out')
nn2 = pipeline.create(dai.node.NeuralNetwork)
nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version))
nn2.setNumInferenceThreads(2)
manip.out.link(nn2.input)
manip.out.link(manip_xout.input)
nn2_xout = pipeline.create(dai.node.XLinkOut)
nn2_xout.setStreamName("recognitions")
nn2.out.link(nn2_xout.input)
def to_tensor_result(packet):
return {
name: np.array(packet.getLayerFp16(name))
for name in [tensor.name for tensor in packet.getRaw().tensors]
}
def to_planar(frame):
return frame.transpose(2, 0, 1).flatten()
with dai.Device(pipeline) as device:
q_vid = device.getOutputQueue("video", 4, blocking=False)
# This should be set to block, but would get to some extreme queuing/latency!
q_det = device.getOutputQueue("detections", 4, blocking=False)
q_rec = device.getOutputQueue("recognitions", 4, blocking=True)
q_manip_img = device.getInputQueue("manip_img")
q_manip_cfg = device.getInputQueue("manip_cfg")
q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False)
controlQueue = device.getInputQueue('control')
frame = None
cropped_stacked = None
rotated_rectangles = []
rec_pushed = 0
rec_received = 0
host_sync = HostSeqSync()
class CTCCodec(object):
""" Convert between text-label and text-index """
def __init__(self, characters):
# characters (str): set of the possible characters.
dict_character = list(characters)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i + 1
self.characters = dict_character
#print(self.characters)
#input()
def decode(self, preds):
""" convert text-index into text-label. """
texts = []
index = 0
# Select max probabilty (greedy decoding) then decode index to character
preds = preds.astype(np.float16)
preds_index = np.argmax(preds, 2)
preds_index = preds_index.transpose(1, 0)
preds_index_reshape = preds_index.reshape(-1)
preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0])
for l in preds_sizes:
t = preds_index_reshape[index:index + l]
# NOTE: t might be zero size
if t.shape[0] == 0:
continue
char_list = []
for i in range(l):
# removing repeated characters and blank.
if not (i > 0 and t[i - 1] == t[i]):
if self.characters[t[i]] != '#':
char_list.append(self.characters[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts
characters = '0123456789abcdefghijklmnopqrstuvwxyz#'
codec = CTCCodec(characters)
ctrl = dai.CameraControl()
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO)
ctrl.setAutoFocusTrigger()
controlQueue.send(ctrl)
while True:
vid_in = q_vid.tryGet()
if vid_in is not None:
host_sync.add_msg(vid_in)
# Multiple recognition results may be available, read until queue is empty
while True:
in_rec = q_rec.tryGet()
if in_rec is None:
break
rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30,1,37)
decoded_text = codec.decode(rec_data)[0]
pos = rotated_rectangles[rec_received]
print("{:2}: {:20}".format(rec_received, decoded_text),
"center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format(
int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2]))
# Draw the text on the right side of 'cropped_stacked' - placeholder
if cropped_stacked is not None:
cv2.putText(cropped_stacked, decoded_text,
(120 + 10 , 32 * rec_received + 24),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2)
cv2.imshow('cropped_stacked', cropped_stacked)
rec_received += 1
if cv2.waitKey(1) == ord('q'):
break
if rec_received >= rec_pushed:
in_det = q_det.tryGet()
if in_det is not None:
frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy()
scores, geom1, geom2 = to_tensor_result(in_det).values()
scores = np.reshape(scores, (1, 1, 64, 64))
geom1 = np.reshape(geom1, (1, 4, 64, 64))
geom2 = np.reshape(geom2, (1, 1, 64, 64))
bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2)
boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
rotated_rectangles = [
east.get_cv_rotated_rect(bbox, angle * -1)
for (bbox, angle) in zip(boxes, angles)
]
rec_received = 0
rec_pushed = len(rotated_rectangles)
if rec_pushed:
print("====== Pushing for recognition, count:", rec_pushed)
cropped_stacked = None
for idx, rotated_rect in enumerate(rotated_rectangles):
# Detections are done on 256x256 frames, we are sending back 1024x1024
# That's why we multiply center and size values by 4
rotated_rect[0][0] = rotated_rect[0][0] * 4
rotated_rect[0][1] = rotated_rect[0][1] * 4
rotated_rect[1][0] = rotated_rect[1][0] * 4
rotated_rect[1][1] = rotated_rect[1][1] * 4
# Draw detection crop area on input frame
points = np.int0(cv2.boxPoints(rotated_rect))
print(rotated_rect)
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
# TODO make it work taking args like in OpenCV:
# rr = ((256, 256), (128, 64), 30)
rr = dai.RotatedRect()
rr.center.x = rotated_rect[0][0]
rr.center.y = rotated_rect[0][1]
rr.size.width = rotated_rect[1][0]
rr.size.height = rotated_rect[1][1]
rr.angle = rotated_rect[2]
cfg = dai.ImageManipConfig()
cfg.setCropRotatedRect(rr, False)
cfg.setResize(120, 32)
# Send frame and config to device
if idx == 0:
w,h,c = frame.shape
imgFrame = dai.ImgFrame()
imgFrame.setData(to_planar(frame))
imgFrame.setType(dai.ImgFrame.Type.BGR888p)
imgFrame.setWidth(w)
imgFrame.setHeight(h)
q_manip_img.send(imgFrame)
else:
cfg.setReusePreviousImage(True)
q_manip_cfg.send(cfg)
# Get manipulated image from the device
transformed = q_manip_out.get().getCvFrame()
rec_placeholder_img = np.zeros((32, 200, 3), np.uint8)
transformed = np.hstack((transformed, rec_placeholder_img))
if cropped_stacked is None:
cropped_stacked = transformed
else:
cropped_stacked = np.vstack((cropped_stacked, transformed))
if cropped_stacked is not None:
cv2.imshow('cropped_stacked', cropped_stacked)
if frame is not None:
cv2.imshow('frame', frame)
key = cv2.waitKey(1)
if key == ord('q'):
break
elif key == ord('t'):
print("Autofocus trigger (and disable continuous)")
ctrl = dai.CameraControl()
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO)
ctrl.setAutoFocusTrigger()
controlQueue.send(ctrl)

View File

@ -5,4 +5,5 @@ opencv-python~=4.5.5.62
google~=3.0.0
google-api-core~=2.4.0
setuptools==60.5.0
protobuf3
protobuf3
blobconverter>=1.2.9