21 Commits

Author SHA1 Message Date
d4f8a12577 feat: refactor and option to configure camera fps 2023-10-01 17:24:05 +02:00
2593d5d953 chore: dependencies upgrade 2023-10-01 11:57:28 +02:00
c6f955a50c fix(camera): bad img height configuration 2022-12-25 11:22:06 +01:00
7ebd9093d9 fix(object_detection): add link from image_manip to nn node 2022-11-11 17:16:38 +01:00
642df5b927 add debug logs 2022-11-09 21:04:32 +01:00
c755d019e8 feat(cli): add flag to configure log level 2022-11-09 20:37:20 +01:00
befb4bacb3 fix: bad pipeline configuration 2022-11-05 16:09:30 +01:00
30f9876c1d build: fix docker build (pip index missing) 2022-11-02 16:31:46 +01:00
df8676ae5c fix(dependency): upgrade robocar-protobuf 2022-11-02 16:08:33 +01:00
9c07826898 build: upgrade dependencies 2022-11-02 15:51:16 +01:00
2149a01dd6 build: fix docker build 2022-11-02 15:35:47 +01:00
0db958e936 build: limit files to include into docker image 2022-11-02 13:56:41 +01:00
4faf3c2fee updaqte dockerignore 2022-11-02 13:55:52 +01:00
7c65f87d58 build: merge mypy.ini with pyproject.toml 2022-10-27 16:04:32 +02:00
55d8ce06c6 build: fix all pylint/mypy errors 2022-10-27 16:03:23 +02:00
4daf4d3c23 build: upgrade dependencies 2022-10-27 09:13:41 +02:00
aed8e9f8c2 feat: check typing with mypy 2022-10-27 09:09:04 +02:00
7670b8b01a refactor: fix pylint 2022-10-26 17:32:35 +02:00
6db1afce75 build: use opencv headless flavor 2022-10-26 10:48:13 +02:00
667c6903ef feat(simulator): add simulator source 2022-10-25 16:59:18 +02:00
24e4410c25 refactor: rewrite depthai node management 2022-10-25 16:44:16 +02:00
12 changed files with 5532 additions and 915 deletions

View File

@ -1,5 +1,5 @@
venv
dist/
dist/*
build-docker.sh
Dockerfile

View File

@ -1,7 +1,8 @@
FROM docker.io/library/python:3.10-slim as base
FROM docker.io/library/python:3.11-slim as base
# Configure piwheels repo to use pre-compiled numpy wheels for arm
RUN echo -n "[global]\nextra-index-url=https://www.piwheels.org/simple\n" >> /etc/pip.conf
RUN echo -n "[global]\n" > /etc/pip.conf &&\
echo -n "extra-index-url = https://www.piwheels.org/simple https://git.cyrilix.bzh/api/packages/robocars/pypi/simple \n" >> /etc/pip.conf
RUN apt-get update && apt-get install -y libgl1 libglib2.0-0
@ -18,9 +19,16 @@ RUN blobconverter --zoo-name mobile_object_localizer_192x192 --zoo-type depthai
FROM base as builder
RUN apt-get install -y git && \
pip3 install poetry==1.2.0 && \
pip3 install poetry && \
poetry self add "poetry-dynamic-versioning[plugin]"
ADD . .
ADD poetry.lock .
ADD pyproject.toml .
ADD camera camera
ADD README.md .
# Poetry expect to found a git project
ADD .git .git
RUN poetry build
@ -31,7 +39,7 @@ RUN mkdir /models
COPY --from=model-builder /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob
COPY --from=builder dist/*.whl /tmp/
RUN pip3 install /tmp/*whl
RUN pip3 install /tmp/*.whl
WORKDIR /tmp
USER 1234

View File

@ -7,6 +7,6 @@ PLATFORM="linux/amd64,linux/arm64"
#PLATFORM="linux/amd64,linux/arm64,linux/arm/v7"
podman build . --platform "${PLATFORM}" --manifest "${IMAGE_NAME}:${TAG}"
podman manifest push --all --format v2s2 "localhost/${IMAGE_NAME}:${TAG}" "docker://${FULL_IMAGE_NAME}"
podman manifest push --all "localhost/${IMAGE_NAME}:${TAG}" "docker://${FULL_IMAGE_NAME}"
printf "\nImage %s published" "docker://${FULL_IMAGE_NAME}"

View File

@ -5,13 +5,14 @@ import argparse
import logging
import os
import signal
import typing, types
import depthai as dai
import paho.mqtt.client as mqtt
from . import depthai as cam
from camera import oak_pipeline as cam
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
_DEFAULT_CLIENT_ID = "robocar-depthai"
@ -44,17 +45,25 @@ def _parse_args_cli() -> argparse.Namespace:
help="threshold to filter detected objects",
type=float,
default=_get_env_float_value("OBJECTS_THRESHOLD", 0.2))
parser.add_argument("-f", "--camera-fps",
help="set rate at which camera should produce frames",
type=int,
default=30)
parser.add_argument("-H", "--image-height", help="image height",
type=int,
default=_get_env_int_value("IMAGE_HEIGHT", 120))
parser.add_argument("-W", "--image-width", help="image width",
type=int,
default=_get_env_int_value("IMAGE_WIDTH", 126))
parser.add_argument("--log", help="Log level",
type=str,
default="info",
choices=["info", "debug"])
args = parser.parse_args()
return args
def _init_mqtt_client(broker_host: str, broker_port, user: str, password: str, client_id: str) -> mqtt.Client:
def _init_mqtt_client(broker_host: str, broker_port: int, user: str, password: str, client_id: str) -> mqtt.Client:
logger.info("Start part.py-robocar-oak-camera")
client = mqtt.Client(client_id=client_id, clean_session=True, userdata=None, protocol=mqtt.MQTTv311)
@ -70,9 +79,12 @@ def execute_from_command_line() -> None:
Cli entrypoint
:return:
"""
logging.basicConfig(level=logging.INFO)
args = _parse_args_cli()
if args.log == "info":
logging.basicConfig(level=logging.INFO)
elif args.log == "debug":
logging.basicConfig(level=logging.DEBUG)
client = _init_mqtt_client(broker_host=args.mqtt_broker_host,
broker_port=args.mqtt_broker_port,
@ -85,12 +97,19 @@ def execute_from_command_line() -> None:
objects_topic=args.mqtt_topic_robocar_objects,
objects_threshold=args.objects_threshold)
pipeline_controller = cam.PipelineController(img_width=args.image_width,
img_height=args.image_height,
pipeline = dai.Pipeline()
pipeline_controller = cam.PipelineController(pipeline=pipeline,
frame_processor=frame_processor,
object_processor=object_processor)
object_processor=object_processor,
object_node=cam.ObjectDetectionNN(pipeline=pipeline),
camera=cam.CameraSource(pipeline=pipeline,
img_width=args.image_width,
img_height=args.image_height,
fps=args.camera_fps,
))
def sigterm_handler():
def sigterm_handler(signum: int, frame: typing.Optional[
types.FrameType]) -> None: # pylint: disable=unused-argument # need to implement handler signature
logger.info("exit on SIGTERM")
pipeline_controller.stop()

View File

@ -1,246 +0,0 @@
"""
Camera event loop
"""
import datetime
import logging
import typing
import cv2
import depthai as dai
import numpy as np
import paho.mqtt.client as mqtt
import events.events_pb2
logger = logging.getLogger(__name__)
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
_NN_WIDTH = 192
_NN_HEIGHT = 192
class ObjectProcessor:
"""
Processor for Object detection
"""
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
self._mqtt_client = mqtt_client
self._objects_topic = objects_topic
self._objects_threshold = objects_threshold
def process(self, in_nn: dai.NNData, frame_ref) -> None:
"""
Parse and publish result of NeuralNetwork result
:param in_nn: NeuralNetwork result read from device
:param frame_ref: Id of the frame where objects are been detected
:return:
"""
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
# keep boxes bigger than threshold
mask = detection_scores >= self._objects_threshold
boxes = detection_boxes[mask]
scores = detection_scores[mask]
if boxes.shape[0] > 0:
self._publish_objects(boxes, frame_ref, scores)
def _publish_objects(self, boxes: np.array, frame_ref, scores: np.array) -> None:
objects_msg = events.events_pb2.ObjectsMessage()
objs = []
for i in range(boxes.shape[0]):
logger.debug("new object detected: %s", str(boxes[i]))
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
objects_msg.objects.extend(objs)
objects_msg.frame_ref.name = frame_ref.name
objects_msg.frame_ref.id = frame_ref.id
objects_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
logger.debug("publish object event to %s", self._objects_topic)
self._mqtt_client.publish(topic=self._objects_topic,
payload=objects_msg.SerializeToString(),
qos=0,
retain=False)
class FrameProcessError(Exception):
"""
Error base for invalid frame processing
Attributes:
message -- explanation of the error
"""
def __init__(self, message: str):
"""
:param message: explanation of the error
"""
self.message = message
class FrameProcessor:
"""
Processor for camera frames
"""
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
self._mqtt_client = mqtt_client
self._frame_topic = frame_topic
def process(self, img: dai.ImgFrame) -> typing.Any:
"""
Publish camera frames
:param img:
:return:
id frame reference
:raise:
FrameProcessError if frame can't be processed
"""
im_resize = img.getCvFrame()
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
if not is_success:
raise FrameProcessError("unable to process to encode frame to jpg")
byte_im = im_buf_arr.tobytes()
now = datetime.datetime.now()
frame_msg = events.events_pb2.FrameMessage()
frame_msg.id.name = "robocar-oak-camera-oak"
frame_msg.id.id = str(int(now.timestamp() * 1000))
frame_msg.id.created_at.FromDatetime(now)
frame_msg.frame = byte_im
logger.debug("publish frame event to %s", self._frame_topic)
self._mqtt_client.publish(topic=self._frame_topic,
payload=frame_msg.SerializeToString(),
qos=0,
retain=False)
return frame_msg.id
class PipelineController:
"""
Pipeline controller that drive camera device
"""
def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor,
object_processor: ObjectProcessor):
self._img_width = img_width
self._img_height = img_height
self._pipeline = self._configure_pipeline()
self._frame_processor = frame_processor
self._object_processor = object_processor
self._stop = False
def _configure_pipeline(self) -> dai.Pipeline:
logger.info("configure pipeline")
pipeline = dai.Pipeline()
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
detection_nn = self._configure_detection_nn(pipeline)
xout_nn = self._configure_xout_nn(pipeline)
# Resize image
manip = pipeline.create(dai.node.ImageManip)
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
manip.initialConfig.setKeepAspectRatio(False)
cam_rgb = pipeline.create(dai.node.ColorCamera)
xout_rgb = pipeline.create(dai.node.XLinkOut)
xout_rgb.setStreamName("rgb")
# Properties
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
cam_rgb.setInterleaved(False)
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
cam_rgb.setFps(30)
# Link preview to manip and manip to nn
cam_rgb.preview.link(manip.inputImage)
manip.out.link(detection_nn.input)
# Linking to output
cam_rgb.preview.link(xout_rgb.input)
detection_nn.out.link(xout_nn.input)
logger.info("pipeline configured")
return pipeline
@staticmethod
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
xout_nn = pipeline.create(dai.node.XLinkOut)
xout_nn.setStreamName("nn")
xout_nn.input.setBlocking(False)
return xout_nn
@staticmethod
def _configure_detection_nn(pipeline: dai.Pipeline) -> dai.node.NeuralNetwork:
# Define a neural network that will make predictions based on the source frames
detection_nn = pipeline.create(dai.node.NeuralNetwork)
detection_nn.setBlobPath(_NN_PATH)
detection_nn.setNumPoolFrames(4)
detection_nn.input.setBlocking(False)
detection_nn.setNumInferenceThreads(2)
return detection_nn
def run(self) -> None:
"""
Start event loop
:return:
"""
# Connect to device and start pipeline
with dai.Device(self._pipeline) as device:
logger.info('MxId: %s', device.getDeviceInfo().getMxId())
logger.info('USB speed: %s', device.getUsbSpeed())
logger.info('Connected cameras: %s', device.getConnectedCameras())
logger.info("output queues found: %s", device.getOutputQueueNames())
device.startPipeline()
# Queues
queue_size = 4
q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False)
q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False)
self._stop = False
while True:
if self._stop:
logger.info("stop loop event")
return
try:
self._loop_on_camera_events(q_nn, q_rgb)
# pylint: disable=broad-except # bad frame or event must not stop loop
except Exception as ex:
logger.exception("unexpected error: %s", str(ex))
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue):
logger.debug("wait for new frame")
# Wait for frame
in_rgb: dai.ImgFrame = q_rgb.get() # blocking call, will wait until a new data has arrived
try:
frame_ref = self._frame_processor.process(in_rgb)
except FrameProcessError as ex:
logger.error("unable to process frame: %s", str(ex))
# Read NN result
in_nn: dai.NNData = q_nn.get()
self._object_processor.process(in_nn, frame_ref)
def stop(self):
"""
Stop event loop, if loop is not running, do nothing
:return:
"""
self._stop = True
def _bbox_to_object(bbox: np.array, score: float) -> events.events_pb2.Object:
obj = events.events_pb2.Object()
obj.type = events.events_pb2.TypeObject.ANY
obj.top = bbox[0].astype(float)
obj.right = bbox[3].astype(float)
obj.bottom = bbox[2].astype(float)
obj.left = bbox[1].astype(float)
obj.confidence = score
return obj

380
camera/oak_pipeline.py Normal file
View File

@ -0,0 +1,380 @@
"""
Camera event loop
"""
import abc
import datetime
import logging
import pathlib
import typing
from dataclasses import dataclass
import cv2
import depthai as dai
import events.events_pb2 as evt
import numpy as np
import numpy.typing as npt
import paho.mqtt.client as mqtt
from depthai import Device
logger = logging.getLogger(__name__)
_NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob"
_NN_WIDTH = 192
_NN_HEIGHT = 192
class ObjectProcessor:
"""
Processor for Object detection
"""
def __init__(self, mqtt_client: mqtt.Client, objects_topic: str, objects_threshold: float):
self._mqtt_client = mqtt_client
self._objects_topic = objects_topic
self._objects_threshold = objects_threshold
def process(self, in_nn: dai.NNData, frame_ref: evt.FrameRef) -> None:
"""
Parse and publish result of NeuralNetwork result
:param in_nn: NeuralNetwork result read from device
:param frame_ref: Id of the frame where objects are been detected
:return:
"""
detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4))
detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,))
# keep boxes bigger than threshold
mask = detection_scores >= self._objects_threshold
boxes = detection_boxes[mask]
scores = detection_scores[mask]
if boxes.shape[0] > 0:
self._publish_objects(boxes, frame_ref, scores)
def _publish_objects(self, boxes: npt.NDArray[np.float64], frame_ref: evt.FrameRef, scores: npt.NDArray[np.float64]) -> None:
objects_msg = evt.ObjectsMessage()
objs = []
for i in range(boxes.shape[0]):
logger.debug("new object detected: %s", str(boxes[i]))
objs.append(_bbox_to_object(boxes[i], scores[i].astype(float)))
objects_msg.objects.extend(objs)
objects_msg.frame_ref.name = frame_ref.name
objects_msg.frame_ref.id = frame_ref.id
objects_msg.frame_ref.created_at.FromDatetime(frame_ref.created_at.ToDatetime())
logger.debug("publish object event to %s", self._objects_topic)
self._mqtt_client.publish(topic=self._objects_topic,
payload=objects_msg.SerializeToString(),
qos=0,
retain=False)
class FrameProcessError(Exception):
"""
Error base for invalid frame processing
Attributes:
message -- explanation of the error
"""
def __init__(self, message: str):
"""
:param message: explanation of the error
"""
self.message = message
class FrameProcessor:
"""
Processor for camera frames
"""
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str):
self._mqtt_client = mqtt_client
self._frame_topic = frame_topic
def process(self, img: dai.ImgFrame) -> typing.Any:
"""
Publish camera frames
:param img: image read from camera
:return:
id frame reference
:raise:
FrameProcessError if frame can't be processed
"""
im_resize = img.getCvFrame()
is_success, im_buf_arr = cv2.imencode(".jpg", im_resize)
if not is_success:
raise FrameProcessError("unable to process to encode frame to jpg")
byte_im = im_buf_arr.tobytes()
now = datetime.datetime.now()
frame_msg = evt.FrameMessage()
frame_msg.id.name = "robocar-oak-camera-oak"
frame_msg.id.id = str(int(now.timestamp() * 1000))
frame_msg.id.created_at.FromDatetime(now)
frame_msg.frame = byte_im
logger.debug("publish frame event to %s", self._frame_topic)
self._mqtt_client.publish(topic=self._frame_topic,
payload=frame_msg.SerializeToString(),
qos=0,
retain=False)
return frame_msg.id
class Source(abc.ABC):
"""Base class for image source"""
@abc.abstractmethod
def get_stream_name(self) -> str:
"""
Queue/stream name to use to get data
:return: steam name
"""
@abc.abstractmethod
def link(self, input_node: dai.Node.Input) -> None:
"""
Link this source to the input node
:param: input_node: input node to link
"""
class ObjectDetectionNN:
"""
Node to detect objects into image
Read image as input and apply resize transformation before to run NN on it
Result is available with 'get_stream_name()' stream
"""
def __init__(self, pipeline: dai.Pipeline):
# Define a neural network that will make predictions based on the source frames
detection_nn = pipeline.createNeuralNetwork()
detection_nn.setBlobPath(pathlib.Path(_NN_PATH))
detection_nn.setNumPoolFrames(4)
detection_nn.input.setBlocking(False)
detection_nn.setNumInferenceThreads(2)
self._detection_nn = detection_nn
self._xout = self._configure_xout_nn(pipeline)
self._detection_nn.out.link(self._xout.input)
self._manip_image = self._configure_manip(pipeline)
self._manip_image.out.link(self._detection_nn.input)
@staticmethod
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
# Resize image
manip = pipeline.createImageManip()
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
manip.initialConfig.setKeepAspectRatio(False)
return manip
@staticmethod
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
xout_nn = pipeline.createXLinkOut()
xout_nn.setStreamName("nn")
xout_nn.input.setBlocking(False)
return xout_nn
def get_stream_name(self) -> str:
"""
Queue/stream name to use to get data
:return: stream name
"""
return self._xout.getStreamName()
def get_input(self) -> dai.Node.Input:
"""
Get input node to use to link with source node
:return: input to link with source output, see Source.link()
"""
return self._manip_image.inputImage
class CameraSource(Source):
"""Image source based on camera preview"""
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int, fps: int):
self._cam_rgb = pipeline.createColorCamera()
self._xout_rgb = pipeline.createXLinkOut()
self._xout_rgb.setStreamName("rgb")
# Properties
self._cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
self._cam_rgb.setPreviewSize(width=img_width, height=img_height)
self._cam_rgb.setInterleaved(False)
self._cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
self._cam_rgb.setFps(fps)
# link camera preview to output
self._cam_rgb.preview.link(self._xout_rgb.input)
def link(self, input_node: dai.Node.Input) -> None:
self._cam_rgb.preview.link(input_node)
def get_stream_name(self) -> str:
return self._xout_rgb.getStreamName()
@dataclass
class MqttConfig:
"""MQTT configuration"""
host: str
topic: str
port: int = 1883
qos: int = 0
class MqttSource(Source):
"""Image source based onto mqtt stream"""
def __init__(self, device: Device, pipeline: dai.Pipeline, mqtt_config: MqttConfig):
self._mqtt_config = mqtt_config
self._client = mqtt.Client()
self._client.user_data_set(mqtt_config)
self._client.on_connect = self._on_connect
self._client.on_message = self._on_message
self._img_in = pipeline.createXLinkIn()
self._img_in.setStreamName("img_input")
self._img_out = pipeline.createXLinkOut()
self._img_out.setStreamName("img_output")
self._img_in.out.link(self._img_out.input)
self._img_in_queue = device.getInputQueue(self._img_in.getStreamName())
def run(self) -> None:
""" Connect and start mqtt loop """
self._client.connect(host=self._mqtt_config.host, port=self._mqtt_config.port)
self._client.loop_start()
def stop(self) -> None:
"""Stop and disconnect mqtt loop"""
self._client.loop_stop()
self._client.disconnect()
@staticmethod
# pylint: disable=unused-argument
def _on_connect(client: mqtt.Client, userdata: MqttConfig, flags: typing.Any,
result_connection: typing.Any) -> None:
# if we lose the connection and reconnect then subscriptions will be renewed.
client.subscribe(topic=userdata.topic, qos=userdata.qos)
# pylint: disable=unused-argument
def _on_message(self, _: mqtt.Client, user_data: MqttConfig, msg: mqtt.MQTTMessage) -> None:
frame_msg = evt.FrameMessage()
frame_msg.ParseFromString(msg.payload)
frame = np.asarray(frame_msg.frame, dtype="uint8")
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
nn_data = dai.NNData()
nn_data.setLayer("data", _to_planar(frame, (300, 300)))
self._img_in_queue.send(nn_data)
def get_stream_name(self) -> str:
return self._img_out.getStreamName()
def link(self, input_node: dai.Node.Input) -> None:
self._img_in.out.link(input_node)
def _to_planar(arr: npt.NDArray[np.uint8], shape: tuple[int, int]) -> list[int]:
return [val for channel in cv2.resize(arr, shape).transpose(2, 0, 1) for y_col in channel for val in y_col]
class PipelineController:
"""
Pipeline controller that drive camera device
"""
def __init__(self, frame_processor: FrameProcessor,
object_processor: ObjectProcessor, camera: Source, object_node: ObjectDetectionNN,
pipeline: dai.Pipeline):
self._frame_processor = frame_processor
self._object_processor = object_processor
self._camera = camera
self._object_node = object_node
self._stop = False
self._pipeline = pipeline
self._configure_pipeline()
def _configure_pipeline(self) -> None:
logger.info("configure pipeline")
self._pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
# Link preview to manip and manip to nn
self._camera.link(self._object_node.get_input())
logger.info("pipeline configured")
def run(self) -> None:
"""
Start event loop
:return:
"""
# Connect to device and start pipeline
with Device(pipeline=self._pipeline) as dev:
logger.info('MxId: %s', dev.getDeviceInfo().getMxId())
logger.info('USB speed: %s', dev.getUsbSpeed())
logger.info('Connected cameras: %s', str(dev.getConnectedCameras()))
logger.info("output queues found: %s", str(''.join(dev.getOutputQueueNames()))) # type: ignore
dev.startPipeline()
# Queues
queue_size = 4
q_rgb = dev.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, # type: ignore
blocking=False)
q_nn = dev.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, # type: ignore
blocking=False)
self._stop = False
while True:
if self._stop:
logger.info("stop loop event")
return
try:
self._loop_on_camera_events(q_nn, q_rgb)
# pylint: disable=broad-except # bad frame or event must not stop loop
except Exception as ex:
logger.exception("unexpected error: %s", str(ex))
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue) -> None:
logger.debug("wait for new frame")
# Wait for frame
in_rgb: dai.ImgFrame = q_rgb.get() # type: ignore # blocking call, will wait until a new data has arrived
try:
logger.debug("process frame")
frame_ref = self._frame_processor.process(in_rgb)
except FrameProcessError as ex:
logger.error("unable to process frame: %s", str(ex))
return
logger.debug("frame processed")
logger.debug("wait for nn response")
# Read NN result
in_nn: dai.NNData = q_nn.get() # type: ignore
logger.debug("process objects")
self._object_processor.process(in_nn, frame_ref)
logger.debug("objects processed")
def stop(self) -> None:
"""
Stop event loop, if loop is not running, do nothing
:return:
"""
self._stop = True
def _bbox_to_object(bbox: npt.NDArray[np.float64], score: float) -> evt.Object:
obj = evt.Object()
obj.type = evt.TypeObject.ANY
obj.top = bbox[0].astype(float)
obj.right = bbox[3].astype(float)
obj.bottom = bbox[2].astype(float)
obj.left = bbox[1].astype(float)
obj.confidence = score
return obj

View File

@ -1,26 +1,28 @@
import datetime
import typing
import unittest.mock
import depthai as dai
import events.events_pb2
import numpy as np
import numpy.typing as npt
import paho.mqtt.client as mqtt
import pytest
import pytest_mock
import camera.depthai
import events.events_pb2
Object = dict[str, float]
@pytest.fixture
def mqtt_client(mocker: pytest_mock.MockerFixture) -> mqtt.Client:
return mocker.MagicMock()
return mocker.MagicMock() # type: ignore
class TestObjectProcessor:
@pytest.fixture
def frame_ref(self):
def frame_ref(self) -> events.events_pb2.FrameRef:
now = datetime.datetime.now()
frame_msg = events.events_pb2.FrameMessage()
frame_msg.id.name = "robocar-oak-camera-oak"
@ -42,7 +44,7 @@ class TestObjectProcessor:
def raw_objects_empty(self, mocker: pytest_mock.MockerFixture) -> dai.NNData:
raw_objects = mocker.MagicMock()
def mock_return(name):
def mock_return(name: str) -> typing.List[typing.Union[int, typing.List[int]]]:
if name == "ExpandDims":
return [[0] * 4] * 100
elif name == "ExpandDims_2":
@ -56,14 +58,14 @@ class TestObjectProcessor:
@pytest.fixture
def raw_objects_one(self, mocker: pytest_mock.MockerFixture, object1: Object) -> dai.NNData:
def mock_return(name):
def mock_return(name: str) -> typing.Union[npt.NDArray[np.int64], typing.List[float]]:
if name == "ExpandDims": # Detection boxes
boxes = [[0] * 4] * 100
boxes: list[list[float]] = [[0.] * 4] * 100
boxes[0] = [object1["top"], object1["left"], object1["bottom"], object1["right"]]
return np.array(boxes)
elif name == "ExpandDims_2": # Detection scores
scores = [0] * 100
scores: list[float] = [0.] * 100
scores[0] = object1["score"]
return scores
else:
@ -77,20 +79,24 @@ class TestObjectProcessor:
def object_processor(self, mqtt_client: mqtt.Client) -> camera.depthai.ObjectProcessor:
return camera.depthai.ObjectProcessor(mqtt_client, "topic/object", 0.2)
def test_process_without_object(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client,
raw_objects_empty, frame_ref):
def test_process_without_object(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
raw_objects_empty: dai.NNData, frame_ref: events.events_pb2.FrameRef) -> None:
object_processor.process(raw_objects_empty, frame_ref)
mqtt_client.publish.assert_not_called()
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
publish_mock.assert_not_called()
def test_process_with_object_with_low_score(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client,
raw_objects_one, frame_ref):
def test_process_with_object_with_low_score(self, object_processor: camera.depthai.ObjectProcessor,
mqtt_client: mqtt.Client, raw_objects_one: dai.NNData,
frame_ref: events.events_pb2.FrameRef) -> None:
object_processor._objects_threshold = 0.9
object_processor.process(raw_objects_one, frame_ref)
mqtt_client.publish.assert_not_called()
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
publish_mock.assert_not_called()
def test_process_with_one_object(self,
object_processor: camera.depthai.ObjectProcessor, mqtt_client,
raw_objects_one, frame_ref, object1: Object):
object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
raw_objects_one: dai.NNData, frame_ref: events.events_pb2.FrameRef,
object1: Object) -> None:
object_processor.process(raw_objects_one, frame_ref)
left = object1["left"]
right = object1["right"]
@ -98,7 +104,7 @@ class TestObjectProcessor:
bottom = object1["bottom"]
score = object1["score"]
pub_mock: unittest.mock.MagicMock = mqtt_client.publish
pub_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
pub_mock.assert_called_once_with(payload=unittest.mock.ANY, qos=0, retain=False, topic="topic/object")
payload = pub_mock.call_args.kwargs['payload']
objects_msg = events.events_pb2.ObjectsMessage()
@ -118,13 +124,13 @@ class TestFrameProcessor:
return camera.depthai.FrameProcessor(mqtt_client, "topic/frame")
def test_process(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
mqtt_client: mqtt.Client):
mqtt_client: mqtt.Client) -> None:
img: dai.ImgFrame = mocker.MagicMock()
mocker.patch(target="cv2.imencode").return_value = (True, np.array(b"img content"))
frame_ref = frame_processor.process(img)
pub_mock: unittest.mock.MagicMock = mqtt_client.publish
pub_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
pub_mock.assert_called_once_with(payload=unittest.mock.ANY, qos=0, retain=False, topic="topic/frame")
payload = pub_mock.call_args.kwargs['payload']
frame_msg = events.events_pb2.FrameMessage()
@ -140,7 +146,7 @@ class TestFrameProcessor:
milliseconds=10) < frame_msg.id.created_at.ToDatetime() < now + datetime.timedelta(milliseconds=10)
def test_process_error(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
mqtt_client: mqtt.Client):
mqtt_client: mqtt.Client) -> None:
img: dai.ImgFrame = mocker.MagicMock()
mocker.patch(target="cv2.imencode").return_value = (False, None)

3627
cv2-stubs/__init__.pyi Normal file

File diff suppressed because one or more lines are too long

View File

View File

@ -1,53 +0,0 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: events/events.proto
"""Generated protocol buffer code."""
from google.protobuf.internal import builder as _builder
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x02\x12\x0b\n\x03top\x18\x03 \x01(\x02\x12\r\n\x05right\x18\x04 \x01(\x02\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x02\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3')
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'events.events_pb2', globals())
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'Z\010./events'
_DRIVEMODE._serialized_start=1196
_DRIVEMODE._serialized_end=1241
_TYPEOBJECT._serialized_start=1243
_TYPEOBJECT._serialized_end=1293
_FRAMEREF._serialized_start=72
_FRAMEREF._serialized_end=156
_FRAMEMESSAGE._serialized_start=158
_FRAMEMESSAGE._serialized_end=225
_STEERINGMESSAGE._serialized_start=227
_STEERINGMESSAGE._serialized_end=327
_THROTTLEMESSAGE._serialized_start=329
_THROTTLEMESSAGE._serialized_end=429
_DRIVEMODEMESSAGE._serialized_start=431
_DRIVEMODEMESSAGE._serialized_end=496
_OBJECTSMESSAGE._serialized_start=498
_OBJECTSMESSAGE._serialized_end=600
_OBJECT._serialized_start=603
_OBJECT._serialized_end=731
_SWITCHRECORDMESSAGE._serialized_start=733
_SWITCHRECORDMESSAGE._serialized_end=771
_ROADMESSAGE._serialized_start=774
_ROADMESSAGE._serialized_end=914
_POINT._serialized_start=916
_POINT._serialized_end=945
_ELLIPSE._serialized_start=947
_ELLIPSE._serialized_end=1061
_RECORDMESSAGE._serialized_start=1064
_RECORDMESSAGE._serialized_end=1194
# @@protoc_insertion_point(module_scope)

2017
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -6,18 +6,17 @@ authors = ["Cyrille Nofficial <cynoffic@cyrilix.fr>"]
readme = "README.md"
packages = [
{ include = "camera" },
{ include = "events" },
]
[tool.poetry.dependencies]
python = "^3.10"
python = "^3.11"
paho-mqtt = "^1.6.1"
depthai = "^2.17.4.0"
depthai = "^2.22.0"
protobuf3 = "^0.2.1"
google = "^3.0.0"
opencv-python = "^4.6.0.66"
blobconverter = "^1.3.0"
protobuf = "^4.21.8"
opencv-python-headless = "^4.6.0.66"
robocar-protobuf = {version = "^1.3.0", source = "robocar"}
[tool.poetry.group.test.dependencies]
@ -27,6 +26,15 @@ pytest-mock = "^3.10.0"
[tool.poetry.group.dev.dependencies]
pylint = "^2.15.4"
mypy = "^0.982"
types-paho-mqtt = "^1.6.0.1"
types-protobuf = "^3.20.4.2"
[[tool.poetry.source]]
name = "robocar"
url = "https://git.cyrilix.bzh/api/packages/robocars/pypi/simple"
priority = "explicit"
[build-system]
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning"]
@ -41,3 +49,8 @@ style = 'semver'
vcs = 'git'
dirty = true
bump = true
[tool.mypy]
strict = true
warn_unused_configs = true
plugins = 'numpy.typing.mypy_plugin'