Compare commits
8 Commits
build/poet
...
feat/simul
Author | SHA1 | Date | |
---|---|---|---|
7c65f87d58 | |||
55d8ce06c6 | |||
4daf4d3c23 | |||
aed8e9f8c2 | |||
7670b8b01a | |||
6db1afce75 | |||
667c6903ef | |||
24e4410c25 |
@ -5,10 +5,12 @@ import argparse
|
||||
import logging
|
||||
import os
|
||||
import signal
|
||||
import typing, types
|
||||
|
||||
import depthai as dai
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from . import depthai as cam
|
||||
from . import depthai as cam # pylint: disable=reimported
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@ -54,7 +56,7 @@ def _parse_args_cli() -> argparse.Namespace:
|
||||
return args
|
||||
|
||||
|
||||
def _init_mqtt_client(broker_host: str, broker_port, user: str, password: str, client_id: str) -> mqtt.Client:
|
||||
def _init_mqtt_client(broker_host: str, broker_port: int, user: str, password: str, client_id: str) -> mqtt.Client:
|
||||
logger.info("Start part.py-robocar-oak-camera")
|
||||
client = mqtt.Client(client_id=client_id, clean_session=True, userdata=None, protocol=mqtt.MQTTv311)
|
||||
|
||||
@ -85,12 +87,17 @@ def execute_from_command_line() -> None:
|
||||
objects_topic=args.mqtt_topic_robocar_objects,
|
||||
objects_threshold=args.objects_threshold)
|
||||
|
||||
pipeline_controller = cam.PipelineController(img_width=args.image_width,
|
||||
img_height=args.image_height,
|
||||
frame_processor=frame_processor,
|
||||
object_processor=object_processor)
|
||||
pipeline = dai.Pipeline()
|
||||
pipeline_controller = cam.PipelineController(frame_processor=frame_processor,
|
||||
object_processor=object_processor,
|
||||
object_node=cam.ObjectDetectionNN(pipeline=pipeline),
|
||||
camera=cam.CameraSource(pipeline=pipeline,
|
||||
img_width=args.image_width,
|
||||
img_height=args.image_width,
|
||||
))
|
||||
|
||||
def sigterm_handler():
|
||||
def sigterm_handler(signum: int, frame: typing.Optional[
|
||||
types.FrameType]) -> None: # pylint: disable=unused-argument # need to implement handler signature
|
||||
logger.info("exit on SIGTERM")
|
||||
pipeline_controller.stop()
|
||||
|
||||
|
@ -1,16 +1,20 @@
|
||||
"""
|
||||
Camera event loop
|
||||
"""
|
||||
import abc
|
||||
import datetime
|
||||
import logging
|
||||
import pathlib
|
||||
import typing
|
||||
from dataclasses import dataclass
|
||||
|
||||
import cv2
|
||||
import depthai as dai
|
||||
import events.events_pb2 as evt
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
import events.events_pb2
|
||||
from depthai import Device
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -29,7 +33,7 @@ class ObjectProcessor:
|
||||
self._objects_topic = objects_topic
|
||||
self._objects_threshold = objects_threshold
|
||||
|
||||
def process(self, in_nn: dai.NNData, frame_ref) -> None:
|
||||
def process(self, in_nn: dai.NNData, frame_ref: evt.FrameRef) -> None:
|
||||
"""
|
||||
Parse and publish result of NeuralNetwork result
|
||||
:param in_nn: NeuralNetwork result read from device
|
||||
@ -46,9 +50,8 @@ class ObjectProcessor:
|
||||
if boxes.shape[0] > 0:
|
||||
self._publish_objects(boxes, frame_ref, scores)
|
||||
|
||||
def _publish_objects(self, boxes: np.array, frame_ref, scores: np.array) -> None:
|
||||
|
||||
objects_msg = events.events_pb2.ObjectsMessage()
|
||||
def _publish_objects(self, boxes: npt.NDArray[np.float64], frame_ref: evt.FrameRef, scores: npt.NDArray[np.float64]) -> None:
|
||||
objects_msg = evt.ObjectsMessage()
|
||||
objs = []
|
||||
for i in range(boxes.shape[0]):
|
||||
logger.debug("new object detected: %s", str(boxes[i]))
|
||||
@ -91,7 +94,7 @@ class FrameProcessor:
|
||||
def process(self, img: dai.ImgFrame) -> typing.Any:
|
||||
"""
|
||||
Publish camera frames
|
||||
:param img:
|
||||
:param img: image read from camera
|
||||
:return:
|
||||
id frame reference
|
||||
:raise:
|
||||
@ -104,7 +107,7 @@ class FrameProcessor:
|
||||
byte_im = im_buf_arr.tobytes()
|
||||
|
||||
now = datetime.datetime.now()
|
||||
frame_msg = events.events_pb2.FrameMessage()
|
||||
frame_msg = evt.FrameMessage()
|
||||
frame_msg.id.name = "robocar-oak-camera-oak"
|
||||
frame_msg.id.id = str(int(now.timestamp() * 1000))
|
||||
frame_msg.id.created_at.FromDatetime(now)
|
||||
@ -117,18 +120,184 @@ class FrameProcessor:
|
||||
return frame_msg.id
|
||||
|
||||
|
||||
class Source(abc.ABC):
|
||||
"""Base class for image source"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_stream_name(self) -> str:
|
||||
"""
|
||||
Queue/stream name to use to get data
|
||||
|
||||
:return: steam name
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def link(self, input_node: dai.Node.Input) -> None:
|
||||
"""
|
||||
Link this source to the input node
|
||||
|
||||
:param: input_node: input node to link
|
||||
"""
|
||||
|
||||
|
||||
class ObjectDetectionNN:
|
||||
"""
|
||||
Node to detect objects into image
|
||||
|
||||
Read image as input and apply resize transformation before to run NN on it
|
||||
Result is available with 'get_stream_name()' stream
|
||||
"""
|
||||
|
||||
def __init__(self, pipeline: dai.Pipeline):
|
||||
# Define a neural network that will make predictions based on the source frames
|
||||
detection_nn = pipeline.createNeuralNetwork()
|
||||
detection_nn.setBlobPath(pathlib.Path(_NN_PATH))
|
||||
detection_nn.setNumPoolFrames(4)
|
||||
detection_nn.input.setBlocking(False)
|
||||
detection_nn.setNumInferenceThreads(2)
|
||||
self._detection_nn = detection_nn
|
||||
self._xout = self._configure_xout_nn(pipeline)
|
||||
self._detection_nn.out.link(self._xout.input)
|
||||
self._manip_image = self._configure_manip(pipeline)
|
||||
|
||||
@staticmethod
|
||||
def _configure_manip(pipeline: dai.Pipeline) -> dai.node.ImageManip:
|
||||
# Resize image
|
||||
manip = pipeline.createImageManip()
|
||||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||
manip.initialConfig.setKeepAspectRatio(False)
|
||||
return manip
|
||||
|
||||
@staticmethod
|
||||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||||
xout_nn = pipeline.createXLinkOut()
|
||||
xout_nn.setStreamName("nn")
|
||||
xout_nn.input.setBlocking(False)
|
||||
return xout_nn
|
||||
|
||||
def get_stream_name(self) -> str:
|
||||
"""
|
||||
Queue/stream name to use to get data
|
||||
|
||||
:return: stream name
|
||||
"""
|
||||
return self._xout.getStreamName()
|
||||
|
||||
def get_input(self) -> dai.Node.Input:
|
||||
"""
|
||||
Get input node to use to link with source node
|
||||
:return: input to link with source output, see Source.link()
|
||||
"""
|
||||
return self._manip_image.inputImage
|
||||
|
||||
|
||||
class CameraSource(Source):
|
||||
"""Image source based on camera preview"""
|
||||
|
||||
def __init__(self, pipeline: dai.Pipeline, img_width: int, img_height: int):
|
||||
cam_rgb = pipeline.createColorCamera()
|
||||
xout_rgb = pipeline.createXLinkOut()
|
||||
xout_rgb.setStreamName("rgb")
|
||||
|
||||
self._cam_rgb = cam_rgb
|
||||
self._xout_rgb = xout_rgb
|
||||
|
||||
# Properties
|
||||
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
cam_rgb.setPreviewSize(width=img_width, height=img_height)
|
||||
cam_rgb.setInterleaved(False)
|
||||
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||||
cam_rgb.setFps(30)
|
||||
|
||||
# link camera preview to output
|
||||
cam_rgb.preview.link(xout_rgb.input)
|
||||
|
||||
def link(self, input_node: dai.Node.Input) -> None:
|
||||
self._cam_rgb.preview.link(input_node)
|
||||
|
||||
def get_stream_name(self) -> str:
|
||||
return self._xout_rgb.getStreamName()
|
||||
|
||||
|
||||
@dataclass
|
||||
class MqttConfig:
|
||||
"""MQTT configuration"""
|
||||
host: str
|
||||
topic: str
|
||||
port: int = 1883
|
||||
qos: int = 0
|
||||
|
||||
|
||||
class MqttSource(Source):
|
||||
"""Image source based onto mqtt stream"""
|
||||
|
||||
def __init__(self, device: Device, pipeline: dai.Pipeline, mqtt_config: MqttConfig):
|
||||
self._mqtt_config = mqtt_config
|
||||
self._client = mqtt.Client()
|
||||
self._client.user_data_set(mqtt_config)
|
||||
self._client.on_connect = self._on_connect
|
||||
self._client.on_message = self._on_message
|
||||
|
||||
self._img_in = pipeline.createXLinkIn()
|
||||
self._img_in.setStreamName("img_input")
|
||||
self._img_out = pipeline.createXLinkOut()
|
||||
self._img_out.setStreamName("img_output")
|
||||
self._img_in.out.link(self._img_out.input)
|
||||
|
||||
self._img_in_queue = device.getInputQueue(self._img_in.getStreamName())
|
||||
|
||||
def run(self) -> None:
|
||||
""" Connect and start mqtt loop """
|
||||
self._client.connect(host=self._mqtt_config.host, port=self._mqtt_config.port)
|
||||
self._client.loop_start()
|
||||
|
||||
def stop(self) -> None:
|
||||
"""Stop and disconnect mqtt loop"""
|
||||
self._client.loop_stop()
|
||||
self._client.disconnect()
|
||||
|
||||
@staticmethod
|
||||
# pylint: disable=unused-argument
|
||||
def _on_connect(client: mqtt.Client, userdata: MqttConfig, flags: typing.Any,
|
||||
result_connection: typing.Any) -> None:
|
||||
# if we lose the connection and reconnect then subscriptions will be renewed.
|
||||
client.subscribe(topic=userdata.topic, qos=userdata.qos)
|
||||
|
||||
# pylint: disable=unused-argument
|
||||
def _on_message(self, _: mqtt.Client, user_data: MqttConfig, msg: mqtt.MQTTMessage) -> None:
|
||||
frame_msg = evt.FrameMessage()
|
||||
frame_msg.ParseFromString(msg.payload)
|
||||
|
||||
frame = np.asarray(frame_msg.frame, dtype="uint8")
|
||||
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
|
||||
nn_data = dai.NNData()
|
||||
nn_data.setLayer("data", _to_planar(frame, (300, 300)))
|
||||
self._img_in_queue.send(nn_data)
|
||||
|
||||
def get_stream_name(self) -> str:
|
||||
return self._img_out.getStreamName()
|
||||
|
||||
def link(self, input_node: dai.Node.Input) -> None:
|
||||
self._img_in.out.link(input_node)
|
||||
|
||||
|
||||
def _to_planar(arr: npt.NDArray[np.uint8], shape: tuple[int, int]) -> list[int]:
|
||||
return [val for channel in cv2.resize(arr, shape).transpose(2, 0, 1) for y_col in channel for val in y_col]
|
||||
|
||||
|
||||
class PipelineController:
|
||||
"""
|
||||
Pipeline controller that drive camera device
|
||||
"""
|
||||
|
||||
def __init__(self, img_width: int, img_height: int, frame_processor: FrameProcessor,
|
||||
object_processor: ObjectProcessor):
|
||||
self._img_width = img_width
|
||||
self._img_height = img_height
|
||||
def __init__(self, frame_processor: FrameProcessor,
|
||||
object_processor: ObjectProcessor, camera: Source, object_node: ObjectDetectionNN):
|
||||
self._pipeline = self._configure_pipeline()
|
||||
self._frame_processor = frame_processor
|
||||
self._object_processor = object_processor
|
||||
self._camera = camera
|
||||
self._object_node = object_node
|
||||
self._stop = False
|
||||
|
||||
def _configure_pipeline(self) -> dai.Pipeline:
|
||||
@ -137,71 +306,31 @@ class PipelineController:
|
||||
|
||||
pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4)
|
||||
|
||||
detection_nn = self._configure_detection_nn(pipeline)
|
||||
xout_nn = self._configure_xout_nn(pipeline)
|
||||
|
||||
# Resize image
|
||||
manip = pipeline.create(dai.node.ImageManip)
|
||||
manip.initialConfig.setResize(_NN_WIDTH, _NN_HEIGHT)
|
||||
manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p)
|
||||
manip.initialConfig.setKeepAspectRatio(False)
|
||||
|
||||
cam_rgb = pipeline.create(dai.node.ColorCamera)
|
||||
xout_rgb = pipeline.create(dai.node.XLinkOut)
|
||||
xout_rgb.setStreamName("rgb")
|
||||
|
||||
# Properties
|
||||
cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
cam_rgb.setPreviewSize(width=self._img_width, height=self._img_height)
|
||||
cam_rgb.setInterleaved(False)
|
||||
cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
|
||||
cam_rgb.setFps(30)
|
||||
|
||||
# Link preview to manip and manip to nn
|
||||
cam_rgb.preview.link(manip.inputImage)
|
||||
manip.out.link(detection_nn.input)
|
||||
|
||||
# Linking to output
|
||||
cam_rgb.preview.link(xout_rgb.input)
|
||||
detection_nn.out.link(xout_nn.input)
|
||||
self._camera.link(self._object_node.get_input())
|
||||
|
||||
logger.info("pipeline configured")
|
||||
return pipeline
|
||||
|
||||
@staticmethod
|
||||
def _configure_xout_nn(pipeline: dai.Pipeline) -> dai.node.XLinkOut:
|
||||
xout_nn = pipeline.create(dai.node.XLinkOut)
|
||||
xout_nn.setStreamName("nn")
|
||||
xout_nn.input.setBlocking(False)
|
||||
return xout_nn
|
||||
|
||||
@staticmethod
|
||||
def _configure_detection_nn(pipeline: dai.Pipeline) -> dai.node.NeuralNetwork:
|
||||
# Define a neural network that will make predictions based on the source frames
|
||||
detection_nn = pipeline.create(dai.node.NeuralNetwork)
|
||||
detection_nn.setBlobPath(_NN_PATH)
|
||||
detection_nn.setNumPoolFrames(4)
|
||||
detection_nn.input.setBlocking(False)
|
||||
detection_nn.setNumInferenceThreads(2)
|
||||
return detection_nn
|
||||
|
||||
def run(self) -> None:
|
||||
"""
|
||||
Start event loop
|
||||
:return:
|
||||
"""
|
||||
# Connect to device and start pipeline
|
||||
with dai.Device(self._pipeline) as device:
|
||||
logger.info('MxId: %s', device.getDeviceInfo().getMxId())
|
||||
logger.info('USB speed: %s', device.getUsbSpeed())
|
||||
logger.info('Connected cameras: %s', device.getConnectedCameras())
|
||||
logger.info("output queues found: %s", device.getOutputQueueNames())
|
||||
with Device(pipeline=self._pipeline) as dev:
|
||||
logger.info('MxId: %s', dev.getDeviceInfo().getMxId())
|
||||
logger.info('USB speed: %s', dev.getUsbSpeed())
|
||||
logger.info('Connected cameras: %s', str(dev.getConnectedCameras()))
|
||||
logger.info("output queues found: %s", str(''.join(dev.getOutputQueueNames()))) # type: ignore
|
||||
|
||||
device.startPipeline()
|
||||
dev.startPipeline()
|
||||
# Queues
|
||||
queue_size = 4
|
||||
q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False)
|
||||
q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False)
|
||||
q_rgb = dev.getOutputQueue(name=self._camera.get_stream_name(), maxSize=queue_size, # type: ignore
|
||||
blocking=False)
|
||||
q_nn = dev.getOutputQueue(name=self._object_node.get_stream_name(), maxSize=queue_size, # type: ignore
|
||||
blocking=False)
|
||||
|
||||
self._stop = False
|
||||
while True:
|
||||
@ -214,20 +343,21 @@ class PipelineController:
|
||||
except Exception as ex:
|
||||
logger.exception("unexpected error: %s", str(ex))
|
||||
|
||||
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue):
|
||||
def _loop_on_camera_events(self, q_nn: dai.DataOutputQueue, q_rgb: dai.DataOutputQueue) -> None:
|
||||
logger.debug("wait for new frame")
|
||||
|
||||
# Wait for frame
|
||||
in_rgb: dai.ImgFrame = q_rgb.get() # blocking call, will wait until a new data has arrived
|
||||
in_rgb: dai.ImgFrame = q_rgb.get() # type: ignore # blocking call, will wait until a new data has arrived
|
||||
try:
|
||||
frame_ref = self._frame_processor.process(in_rgb)
|
||||
except FrameProcessError as ex:
|
||||
logger.error("unable to process frame: %s", str(ex))
|
||||
return
|
||||
# Read NN result
|
||||
in_nn: dai.NNData = q_nn.get()
|
||||
in_nn: dai.NNData = q_nn.get() # type: ignore
|
||||
self._object_processor.process(in_nn, frame_ref)
|
||||
|
||||
def stop(self):
|
||||
def stop(self) -> None:
|
||||
"""
|
||||
Stop event loop, if loop is not running, do nothing
|
||||
:return:
|
||||
@ -235,9 +365,9 @@ class PipelineController:
|
||||
self._stop = True
|
||||
|
||||
|
||||
def _bbox_to_object(bbox: np.array, score: float) -> events.events_pb2.Object:
|
||||
obj = events.events_pb2.Object()
|
||||
obj.type = events.events_pb2.TypeObject.ANY
|
||||
def _bbox_to_object(bbox: npt.NDArray[np.float64], score: float) -> evt.Object:
|
||||
obj = evt.Object()
|
||||
obj.type = evt.TypeObject.ANY
|
||||
obj.top = bbox[0].astype(float)
|
||||
obj.right = bbox[3].astype(float)
|
||||
obj.bottom = bbox[2].astype(float)
|
||||
|
@ -1,26 +1,28 @@
|
||||
import datetime
|
||||
import typing
|
||||
import unittest.mock
|
||||
|
||||
import depthai as dai
|
||||
import events.events_pb2
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import paho.mqtt.client as mqtt
|
||||
import pytest
|
||||
import pytest_mock
|
||||
|
||||
import camera.depthai
|
||||
import events.events_pb2
|
||||
|
||||
Object = dict[str, float]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mqtt_client(mocker: pytest_mock.MockerFixture) -> mqtt.Client:
|
||||
return mocker.MagicMock()
|
||||
return mocker.MagicMock() # type: ignore
|
||||
|
||||
|
||||
class TestObjectProcessor:
|
||||
@pytest.fixture
|
||||
def frame_ref(self):
|
||||
def frame_ref(self) -> events.events_pb2.FrameRef:
|
||||
now = datetime.datetime.now()
|
||||
frame_msg = events.events_pb2.FrameMessage()
|
||||
frame_msg.id.name = "robocar-oak-camera-oak"
|
||||
@ -42,7 +44,7 @@ class TestObjectProcessor:
|
||||
def raw_objects_empty(self, mocker: pytest_mock.MockerFixture) -> dai.NNData:
|
||||
raw_objects = mocker.MagicMock()
|
||||
|
||||
def mock_return(name):
|
||||
def mock_return(name: str) -> typing.List[typing.Union[int, typing.List[int]]]:
|
||||
if name == "ExpandDims":
|
||||
return [[0] * 4] * 100
|
||||
elif name == "ExpandDims_2":
|
||||
@ -56,14 +58,14 @@ class TestObjectProcessor:
|
||||
|
||||
@pytest.fixture
|
||||
def raw_objects_one(self, mocker: pytest_mock.MockerFixture, object1: Object) -> dai.NNData:
|
||||
def mock_return(name):
|
||||
def mock_return(name: str) -> typing.Union[npt.NDArray[np.int64], typing.List[float]]:
|
||||
if name == "ExpandDims": # Detection boxes
|
||||
boxes = [[0] * 4] * 100
|
||||
boxes: list[list[float]] = [[0.] * 4] * 100
|
||||
boxes[0] = [object1["top"], object1["left"], object1["bottom"], object1["right"]]
|
||||
return np.array(boxes)
|
||||
|
||||
elif name == "ExpandDims_2": # Detection scores
|
||||
scores = [0] * 100
|
||||
scores: list[float] = [0.] * 100
|
||||
scores[0] = object1["score"]
|
||||
return scores
|
||||
else:
|
||||
@ -77,20 +79,24 @@ class TestObjectProcessor:
|
||||
def object_processor(self, mqtt_client: mqtt.Client) -> camera.depthai.ObjectProcessor:
|
||||
return camera.depthai.ObjectProcessor(mqtt_client, "topic/object", 0.2)
|
||||
|
||||
def test_process_without_object(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client,
|
||||
raw_objects_empty, frame_ref):
|
||||
def test_process_without_object(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
|
||||
raw_objects_empty: dai.NNData, frame_ref: events.events_pb2.FrameRef) -> None:
|
||||
object_processor.process(raw_objects_empty, frame_ref)
|
||||
mqtt_client.publish.assert_not_called()
|
||||
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||
publish_mock.assert_not_called()
|
||||
|
||||
def test_process_with_object_with_low_score(self, object_processor: camera.depthai.ObjectProcessor, mqtt_client,
|
||||
raw_objects_one, frame_ref):
|
||||
def test_process_with_object_with_low_score(self, object_processor: camera.depthai.ObjectProcessor,
|
||||
mqtt_client: mqtt.Client, raw_objects_one: dai.NNData,
|
||||
frame_ref: events.events_pb2.FrameRef) -> None:
|
||||
object_processor._objects_threshold = 0.9
|
||||
object_processor.process(raw_objects_one, frame_ref)
|
||||
mqtt_client.publish.assert_not_called()
|
||||
publish_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||
publish_mock.assert_not_called()
|
||||
|
||||
def test_process_with_one_object(self,
|
||||
object_processor: camera.depthai.ObjectProcessor, mqtt_client,
|
||||
raw_objects_one, frame_ref, object1: Object):
|
||||
object_processor: camera.depthai.ObjectProcessor, mqtt_client: mqtt.Client,
|
||||
raw_objects_one: dai.NNData, frame_ref: events.events_pb2.FrameRef,
|
||||
object1: Object) -> None:
|
||||
object_processor.process(raw_objects_one, frame_ref)
|
||||
left = object1["left"]
|
||||
right = object1["right"]
|
||||
@ -98,7 +104,7 @@ class TestObjectProcessor:
|
||||
bottom = object1["bottom"]
|
||||
score = object1["score"]
|
||||
|
||||
pub_mock: unittest.mock.MagicMock = mqtt_client.publish
|
||||
pub_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||
pub_mock.assert_called_once_with(payload=unittest.mock.ANY, qos=0, retain=False, topic="topic/object")
|
||||
payload = pub_mock.call_args.kwargs['payload']
|
||||
objects_msg = events.events_pb2.ObjectsMessage()
|
||||
@ -118,13 +124,13 @@ class TestFrameProcessor:
|
||||
return camera.depthai.FrameProcessor(mqtt_client, "topic/frame")
|
||||
|
||||
def test_process(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
|
||||
mqtt_client: mqtt.Client):
|
||||
mqtt_client: mqtt.Client) -> None:
|
||||
img: dai.ImgFrame = mocker.MagicMock()
|
||||
mocker.patch(target="cv2.imencode").return_value = (True, np.array(b"img content"))
|
||||
|
||||
frame_ref = frame_processor.process(img)
|
||||
|
||||
pub_mock: unittest.mock.MagicMock = mqtt_client.publish
|
||||
pub_mock: unittest.mock.MagicMock = mqtt_client.publish # type: ignore
|
||||
pub_mock.assert_called_once_with(payload=unittest.mock.ANY, qos=0, retain=False, topic="topic/frame")
|
||||
payload = pub_mock.call_args.kwargs['payload']
|
||||
frame_msg = events.events_pb2.FrameMessage()
|
||||
@ -140,7 +146,7 @@ class TestFrameProcessor:
|
||||
milliseconds=10) < frame_msg.id.created_at.ToDatetime() < now + datetime.timedelta(milliseconds=10)
|
||||
|
||||
def test_process_error(self, frame_processor: camera.depthai.FrameProcessor, mocker: pytest_mock.MockerFixture,
|
||||
mqtt_client: mqtt.Client):
|
||||
mqtt_client: mqtt.Client) -> None:
|
||||
img: dai.ImgFrame = mocker.MagicMock()
|
||||
mocker.patch(target="cv2.imencode").return_value = (False, None)
|
||||
|
||||
|
3627
cv2-stubs/__init__.pyi
Normal file
3627
cv2-stubs/__init__.pyi
Normal file
File diff suppressed because one or more lines are too long
@ -1,53 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||
# source: events/events.proto
|
||||
"""Generated protocol buffer code."""
|
||||
from google.protobuf.internal import builder as _builder
|
||||
from google.protobuf import descriptor as _descriptor
|
||||
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||
from google.protobuf import symbol_database as _symbol_database
|
||||
# @@protoc_insertion_point(imports)
|
||||
|
||||
_sym_db = _symbol_database.Default()
|
||||
|
||||
|
||||
from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2
|
||||
|
||||
|
||||
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x02\x12\x0b\n\x03top\x18\x03 \x01(\x02\x12\r\n\x05right\x18\x04 \x01(\x02\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x02\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3')
|
||||
|
||||
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
|
||||
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'events.events_pb2', globals())
|
||||
if _descriptor._USE_C_DESCRIPTORS == False:
|
||||
|
||||
DESCRIPTOR._options = None
|
||||
DESCRIPTOR._serialized_options = b'Z\010./events'
|
||||
_DRIVEMODE._serialized_start=1196
|
||||
_DRIVEMODE._serialized_end=1241
|
||||
_TYPEOBJECT._serialized_start=1243
|
||||
_TYPEOBJECT._serialized_end=1293
|
||||
_FRAMEREF._serialized_start=72
|
||||
_FRAMEREF._serialized_end=156
|
||||
_FRAMEMESSAGE._serialized_start=158
|
||||
_FRAMEMESSAGE._serialized_end=225
|
||||
_STEERINGMESSAGE._serialized_start=227
|
||||
_STEERINGMESSAGE._serialized_end=327
|
||||
_THROTTLEMESSAGE._serialized_start=329
|
||||
_THROTTLEMESSAGE._serialized_end=429
|
||||
_DRIVEMODEMESSAGE._serialized_start=431
|
||||
_DRIVEMODEMESSAGE._serialized_end=496
|
||||
_OBJECTSMESSAGE._serialized_start=498
|
||||
_OBJECTSMESSAGE._serialized_end=600
|
||||
_OBJECT._serialized_start=603
|
||||
_OBJECT._serialized_end=731
|
||||
_SWITCHRECORDMESSAGE._serialized_start=733
|
||||
_SWITCHRECORDMESSAGE._serialized_end=771
|
||||
_ROADMESSAGE._serialized_start=774
|
||||
_ROADMESSAGE._serialized_end=914
|
||||
_POINT._serialized_start=916
|
||||
_POINT._serialized_end=945
|
||||
_ELLIPSE._serialized_start=947
|
||||
_ELLIPSE._serialized_end=1061
|
||||
_RECORDMESSAGE._serialized_start=1064
|
||||
_RECORDMESSAGE._serialized_end=1194
|
||||
# @@protoc_insertion_point(module_scope)
|
1131
poetry.lock
generated
1131
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -6,7 +6,6 @@ authors = ["Cyrille Nofficial <cynoffic@cyrilix.fr>"]
|
||||
readme = "README.md"
|
||||
packages = [
|
||||
{ include = "camera" },
|
||||
{ include = "events" },
|
||||
]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
@ -15,9 +14,10 @@ paho-mqtt = "^1.6.1"
|
||||
depthai = "^2.17.4.0"
|
||||
protobuf3 = "^0.2.1"
|
||||
google = "^3.0.0"
|
||||
opencv-python = "^4.6.0.66"
|
||||
blobconverter = "^1.3.0"
|
||||
protobuf = "^4.21.8"
|
||||
opencv-python-headless = "^4.6.0.66"
|
||||
robocar-protobuf = { version = "^1.1.1", source = "robocar" }
|
||||
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
@ -27,6 +27,16 @@ pytest-mock = "^3.10.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pylint = "^2.15.4"
|
||||
mypy = "^0.982"
|
||||
types-paho-mqtt = "^1.6.0.1"
|
||||
types-protobuf = "^3.20.4.2"
|
||||
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "robocar"
|
||||
url = "https://git.cyrilix.bzh/api/packages/robocars/pypi/simple"
|
||||
default = false
|
||||
secondary = false
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning"]
|
||||
@ -41,3 +51,8 @@ style = 'semver'
|
||||
vcs = 'git'
|
||||
dirty = true
|
||||
bump = true
|
||||
|
||||
[tool.mypy]
|
||||
strict = true
|
||||
warn_unused_configs = true
|
||||
plugins = 'numpy.typing.mypy_plugin'
|
||||
|
Reference in New Issue
Block a user