Compare commits
	
		
			4 Commits
		
	
	
		
			feat/depth
			...
			3766531936
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 3766531936 | |||
| fe63597ba4 | |||
| 52c3808d83 | |||
| 33c16699ae | 
							
								
								
									
										12
									
								
								Dockerfile
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								Dockerfile
									
									
									
									
									
								
							| @@ -1,3 +1,12 @@ | ||||
| FROM docker.io/library/python:3.9-slim AS model | ||||
|  | ||||
| RUN python3 -m pip install blobconverter | ||||
|  | ||||
| RUN mkdir -p /models | ||||
|  | ||||
| RUN blobconverter --zoo-name mobile_object_localizer_192x192 --zoo-type depthai --shaves 6 --version 2021.4 --output-dir /models || echo "" | ||||
| RUN ls /models | ||||
| ####### | ||||
| FROM docker.io/library/python:3.9-slim | ||||
|  | ||||
| # Configure piwheels repo to use pre-compiled numpy wheels for arm | ||||
| @@ -7,6 +16,9 @@ RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 | ||||
|  | ||||
| RUN pip3 install numpy | ||||
|  | ||||
| RUN mkdir /models | ||||
|  | ||||
| COPY --from=model /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob /models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob | ||||
| ADD requirements.txt requirements.txt | ||||
|  | ||||
| RUN pip3 install -r requirements.txt | ||||
|   | ||||
| @@ -1,19 +1,25 @@ | ||||
| """ | ||||
| Publish data from oak-lite device | ||||
|  | ||||
| Usage: rc-oak-camera [-u USERNAME | --mqtt-username=USERNAME] [--mqtt-password=PASSWORD] [--mqtt-broker=HOSTNAME] \ | ||||
|     [--mqtt-topic-robocar-oak-camera="TOPIC_CAMERA"] [--mqtt-client-id=CLIENT_ID] \ | ||||
|     [-H IMG_HEIGHT | --image-height=IMG_HEIGHT] [-W IMG_WIDTH | --image-width=IMG_width] | ||||
| Usage: rc-oak-camera [-u USERNAME | --mqtt-username=USERNAME] [--mqtt-password=PASSWORD] \ | ||||
|     [--mqtt-broker-host=HOSTNAME] [--mqtt-broker-port=PORT] \ | ||||
|     [--mqtt-topic-robocar-oak-camera="TOPIC_CAMERA"] [--mqtt-topic-robocar-objects="TOPIC_OBJECTS"] \ | ||||
|     [--mqtt-client-id=CLIENT_ID] \ | ||||
|     [-H IMG_HEIGHT | --image-height=IMG_HEIGHT] [-W IMG_WIDTH | --image-width=IMG_width] \ | ||||
|     [-t OBJECTS_THRESHOLD | --objects-threshold=OBJECTS_THRESHOLD] | ||||
|  | ||||
| Options: | ||||
| -h --help                                               Show this screen. | ||||
| -u USERID --mqtt-username=USERNAME                      MQTT user | ||||
| -p PASSWORD --mqtt-password=PASSWORD                    MQTT password | ||||
| -b HOSTNAME --mqtt-broker=HOSTNAME                      MQTT broker host | ||||
| -b HOSTNAME --mqtt-broker-host=HOSTNAME                 MQTT broker host | ||||
| -P HOSTNAME --mqtt-broker-port=PORT                     MQTT broker port | ||||
| -C CLIENT_ID --mqtt-client-id=CLIENT_ID                 MQTT client id | ||||
| -c TOPIC_CAMERA --mqtt-topic-robocar-oak-camera=TOPIC_CAMERA        MQTT topic where to publish robocar-oak-camera frames | ||||
| -o TOPIC_OBJECTS --mqtt-topic-robocar-objects=TOPIC_OBJECTS         MQTT topic where to publish objects detection results | ||||
| -H IMG_HEIGHT --image-height=IMG_HEIGHT                 IMG_HEIGHT image height | ||||
| -W IMG_WIDTH --image-width=IMG_width                    IMG_WIDTH image width | ||||
| -t OBJECTS_THRESHOLD --objects-threshold=OBJECTS_THRESHOLD    OBJECTS_THRESHOLD threshold to filter objects detected | ||||
| """ | ||||
| import logging | ||||
| import os | ||||
| @@ -27,13 +33,13 @@ logging.basicConfig(level=logging.INFO) | ||||
| default_client_id = "robocar-depthai" | ||||
|  | ||||
|  | ||||
| def init_mqtt_client(broker_host: str, user: str, password: str, client_id: str) -> mqtt.Client: | ||||
| def init_mqtt_client(broker_host: str, broker_port, user: str, password: str, client_id: str) -> mqtt.Client: | ||||
|     logger.info("Start part.py-robocar-oak-camera") | ||||
|     client = mqtt.Client(client_id=client_id, clean_session=True, userdata=None, protocol=mqtt.MQTTv311) | ||||
|  | ||||
|     client.username_pw_set(user, password) | ||||
|     logger.info("Connect to mqtt broker "+ broker_host) | ||||
|     client.connect(host=broker_host, port=1883, keepalive=60) | ||||
|     client.connect(host=broker_host, port=broker_port, keepalive=60) | ||||
|     logger.info("Connected to mqtt broker") | ||||
|     return client | ||||
|  | ||||
| @@ -43,16 +49,21 @@ def execute_from_command_line(): | ||||
|  | ||||
|     args = docopt(__doc__) | ||||
|  | ||||
|     client = init_mqtt_client(broker_host=get_default_value(args["--mqtt-broker"], "MQTT_BROKER", "localhost"), | ||||
|     client = init_mqtt_client(broker_host=get_default_value(args["--mqtt-broker-host"], "MQTT_BROKER_HOST", "localhost"), | ||||
|                               broker_port=int(get_default_value(args["--mqtt-broker-port"], "MQTT_BROKER_PORT", "1883")), | ||||
|                               user=get_default_value(args["--mqtt-username"], "MQTT_USERNAME", ""), | ||||
|                               password=get_default_value(args["--mqtt-password"], "MQTT_PASSWORD", ""), | ||||
|                               client_id=get_default_value(args["--mqtt-client-id"], "MQTT_CLIENT_ID", | ||||
|                                                           default_client_id), | ||||
|                               ) | ||||
|     frame_topic = get_default_value(args["--mqtt-topic-robocar-oak-camera"], "MQTT_TOPIC_CAMERA", "/oak/camera_rgb") | ||||
|     objects_topic = get_default_value(args["--mqtt-topic-robocar-objects"], "MQTT_TOPIC_OBJECTS", "/objects") | ||||
|  | ||||
|     frame_processor = cam.FramePublisher(mqtt_client=client, | ||||
|                                          frame_topic=frame_topic, | ||||
|                                          objects_topic=objects_topic, | ||||
|                                          objects_threshold=float(get_default_value(args["--objects-threshold"], | ||||
|                                                                                    "OBJECTS_THRESHOLD", 0.2)), | ||||
|                                          img_width=int(get_default_value(args["--image-width"], "IMAGE_WIDTH", 160)), | ||||
|                                          img_height=int(get_default_value(args["--image-height"], "IMAGE_HEIGHT", 120))) | ||||
|     frame_processor.run() | ||||
|   | ||||
| @@ -10,69 +10,49 @@ import numpy as np | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
| # Closer-in minimum depth, disparity range is doubled (from 95 to 190): | ||||
| extended_disparity = False | ||||
| # Better accuracy for longer distance, fractional disparity 32-levels: | ||||
| subpixel = True | ||||
| # Better handling for occlusions: | ||||
| lr_check = True | ||||
| NN_PATH = "/models/mobile_object_localizer_192x192_openvino_2021.4_6shave.blob" | ||||
| NN_WIDTH = 192 | ||||
| NN_HEIGHT = 192 | ||||
|  | ||||
|  | ||||
| class FramePublisher: | ||||
|     def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int): | ||||
|     def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, objects_topic: str, objects_threshold: float, | ||||
|                  img_width: int, img_height: int): | ||||
|         self._mqtt_client = mqtt_client | ||||
|         self._frame_topic = frame_topic | ||||
|         self._objects_topic = objects_topic | ||||
|         self._objects_threshold = objects_threshold | ||||
|         self._img_width = img_width | ||||
|         self._img_height = img_height | ||||
|         self._depth = None | ||||
|         self._pipeline = self._configure_pipeline() | ||||
|  | ||||
|     def _configure_pipeline(self) -> dai.Pipeline: | ||||
|         logger.info("configure pipeline") | ||||
|         pipeline = dai.Pipeline() | ||||
|  | ||||
|         pipeline.setOpenVINOVersion(version=dai.OpenVINO.VERSION_2021_4) | ||||
|  | ||||
|         # Define a neural network that will make predictions based on the source frames | ||||
|         detection_nn = pipeline.create(dai.node.NeuralNetwork) | ||||
|         detection_nn.setBlobPath(NN_PATH) | ||||
|         detection_nn.setNumPoolFrames(4) | ||||
|         detection_nn.input.setBlocking(False) | ||||
|         detection_nn.setNumInferenceThreads(2) | ||||
|  | ||||
|         xout_nn = pipeline.create(dai.node.XLinkOut) | ||||
|         xout_nn.setStreamName("nn") | ||||
|         xout_nn.input.setBlocking(False) | ||||
|  | ||||
|         # Resize image | ||||
|         manip = pipeline.create(dai.node.ImageManip) | ||||
|         manip.initialConfig.setResize(NN_WIDTH, NN_HEIGHT) | ||||
|         manip.initialConfig.setFrameType(dai.ImgFrame.Type.RGB888p) | ||||
|         manip.initialConfig.setKeepAspectRatio(False) | ||||
|  | ||||
|         cam_rgb = pipeline.create(dai.node.ColorCamera) | ||||
|         xout_rgb = pipeline.create(dai.node.XLinkOut) | ||||
|  | ||||
|         xout_rgb.setStreamName("rgb") | ||||
|  | ||||
|         monoLeft = pipeline.create(dai.node.MonoCamera) | ||||
|         monoRight = pipeline.create(dai.node.MonoCamera) | ||||
|         depth = pipeline.create(dai.node.StereoDepth) | ||||
|         xout = pipeline.create(dai.node.XLinkOut) | ||||
|         self._depth = depth | ||||
|  | ||||
|         xout.setStreamName("disparity") | ||||
|  | ||||
|         # Properties | ||||
|         monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) | ||||
|         monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT) | ||||
|         monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) | ||||
|         monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT) | ||||
|  | ||||
|         # Create a node that will produce the depth map (using disparity output as it's easier to visualize depth this way) | ||||
|         depth.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY) | ||||
|         # Options: MEDIAN_OFF, KERNEL_3x3, KERNEL_5x5, KERNEL_7x7 (default) | ||||
|         depth.initialConfig.setMedianFilter(dai.MedianFilter.KERNEL_7x7) | ||||
|         depth.setLeftRightCheck(lr_check) | ||||
|         depth.setExtendedDisparity(extended_disparity) | ||||
|         depth.setSubpixel(subpixel) | ||||
|  | ||||
|         config = depth.initialConfig.get() | ||||
|         config.postProcessing.speckleFilter.enable = True | ||||
|         config.postProcessing.speckleFilter.speckleRange = 50 | ||||
|         config.postProcessing.temporalFilter.enable = False | ||||
|         config.postProcessing.spatialFilter.enable = False | ||||
|         config.postProcessing.spatialFilter.holeFillingRadius = 2 | ||||
|         config.postProcessing.spatialFilter.numIterations = 1 | ||||
|         #config.postProcessing.thresholdFilter.minRange = 400 | ||||
|         #config.postProcessing.thresholdFilter.maxRange = 15000 | ||||
|         config.postProcessing.decimationFilter.decimationFactor = 2 | ||||
|         depth.initialConfig.set(config) | ||||
|  | ||||
|         # Linking | ||||
|         monoLeft.out.link(depth.left) | ||||
|         monoRight.out.link(depth.right) | ||||
|         depth.disparity.link(xout.input) | ||||
|  | ||||
|         # Properties | ||||
|         cam_rgb.setBoardSocket(dai.CameraBoardSocket.RGB) | ||||
| @@ -81,8 +61,14 @@ class FramePublisher: | ||||
|         cam_rgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB) | ||||
|         cam_rgb.setFps(30) | ||||
|  | ||||
|         # Linking | ||||
|         # Link preview to manip and manip to nn | ||||
|         cam_rgb.preview.link(manip.inputImage) | ||||
|         manip.out.link(detection_nn.input) | ||||
|  | ||||
|         # Linking to output | ||||
|         cam_rgb.preview.link(xout_rgb.input) | ||||
|         detection_nn.out.link(xout_nn.input) | ||||
|  | ||||
|         logger.info("pipeline configured") | ||||
|         return pipeline | ||||
|  | ||||
| @@ -98,24 +84,15 @@ class FramePublisher: | ||||
|             device.startPipeline() | ||||
|             # Queues | ||||
|             queue_size = 4 | ||||
|             q_rgb = device.getOutputQueue("rgb", maxSize=queue_size, blocking=False) | ||||
|  | ||||
|             # Output queue will be used to get the disparity frames from the outputs defined above | ||||
|             q_disparity = device.getOutputQueue(name="disparity", maxSize=4, blocking=False) | ||||
|             q_rgb = device.getOutputQueue(name="rgb", maxSize=queue_size, blocking=False) | ||||
|             q_nn = device.getOutputQueue(name="nn", maxSize=queue_size, blocking=False) | ||||
|  | ||||
|             while True: | ||||
|                 try: | ||||
|                     logger.debug("wait for new frame") | ||||
|                     inRgb = q_rgb.get()  # blocking call, will wait until a new data has arrived | ||||
|                     inDisparity = q_disparity.get() | ||||
|                     # im_resize = inRgb.getCvFrame() | ||||
|                     im_resize = inDisparity.getCvFrame() | ||||
|  | ||||
|                     # Normalization for better visualization | ||||
|                     im_resize = (im_resize * (255 / self._depth.initialConfig.getMaxDisparity())).astype(np.uint8) | ||||
|  | ||||
|                     # Available color maps: https://docs.opencv.org/3.4/d3/d50/group__imgproc__colormap.html | ||||
|                     # im_resize = cv2.applyColorMap(im_resize, cv2.COLORMAP_JET) | ||||
|                     im_resize = inRgb.getCvFrame() | ||||
|  | ||||
|                     is_success, im_buf_arr = cv2.imencode(".jpg", im_resize) | ||||
|                     byte_im = im_buf_arr.tobytes() | ||||
| @@ -133,5 +110,42 @@ class FramePublisher: | ||||
|                                               qos=0, | ||||
|                                               retain=False) | ||||
|  | ||||
|                     in_nn = q_nn.get() | ||||
|  | ||||
|                     # get outputs | ||||
|                     detection_boxes = np.array(in_nn.getLayerFp16("ExpandDims")).reshape((100, 4)) | ||||
|                     detection_scores = np.array(in_nn.getLayerFp16("ExpandDims_2")).reshape((100,)) | ||||
|  | ||||
|                     # keep boxes bigger than threshold | ||||
|                     mask = detection_scores >= self._objects_threshold | ||||
|                     boxes = detection_boxes[mask] | ||||
|                     scores = detection_scores[mask] | ||||
|  | ||||
|                     if boxes.shape[0] > 0: | ||||
|                         objects_msg = events.events_pb2.ObjectsMessage() | ||||
|                         objs = [] | ||||
|                         for i in range(boxes.shape[0]): | ||||
|                             bbox = boxes[i] | ||||
|                             logger.debug("new object detected: %s", str(bbox)) | ||||
|                             o = events.events_pb2.Object() | ||||
|                             o.type = events.events_pb2.TypeObject.ANY | ||||
|                             o.top = bbox[0].astype(float) | ||||
|                             o.right = bbox[3].astype(float) | ||||
|                             o.bottom = bbox[2].astype(float) | ||||
|                             o.left = bbox[1].astype(float) | ||||
|                             o.confidence = scores[i].astype(float) | ||||
|                             objs.append(o) | ||||
|                         objects_msg.objects.extend(objs) | ||||
|  | ||||
|                         objects_msg.frame_ref.name = frame_msg.id.name | ||||
|                         objects_msg.frame_ref.id = frame_msg.id.id | ||||
|                         objects_msg.frame_ref.created_at.FromDatetime(now) | ||||
|  | ||||
|                         logger.debug("publish object event to %s", self._frame_topic) | ||||
|                         self._mqtt_client.publish(topic=self._objects_topic, | ||||
|                                                   payload=objects_msg.SerializeToString(), | ||||
|                                                   qos=0, | ||||
|                                                   retain=False) | ||||
|  | ||||
|                 except Exception as e: | ||||
|                     logger.exception("unexpected error: %s", str(e)) | ||||
|   | ||||
| @@ -14,7 +14,7 @@ _sym_db = _symbol_database.Default() | ||||
| from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 | ||||
|  | ||||
|  | ||||
| DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x05\x12\x0b\n\x03top\x18\x03 \x01(\x05\x12\r\n\x05right\x18\x04 \x01(\x05\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x05\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3') | ||||
| DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x02\x12\x0b\n\x03top\x18\x03 \x01(\x02\x12\r\n\x05right\x18\x04 \x01(\x02\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x02\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3') | ||||
|  | ||||
| _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) | ||||
| _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'events.events_pb2', globals()) | ||||
|   | ||||
| @@ -1,8 +1,8 @@ | ||||
| paho-mqtt~=1.6.1 | ||||
| docopt~=0.6.2 | ||||
| depthai==2.14.1.0 | ||||
| opencv-python~=4.5.5.62 | ||||
| depthai==2.17.2.0 | ||||
| opencv-python==4.6.0.66 | ||||
| google~=3.0.0 | ||||
| google-api-core~=2.4.0 | ||||
| setuptools==60.5.0 | ||||
| protobuf3 | ||||
| blobconverter==1.3.0 | ||||
		Reference in New Issue
	
	Block a user