Compare commits
2 Commits
master
...
feat/text_
Author | SHA1 | Date | |
---|---|---|---|
0467ab780c | |||
2c9c7d9078 |
@ -10,6 +10,17 @@ import cv2
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def to_tensor_result(packet):
|
||||
return {
|
||||
name: np.array(packet.getLayerFp16(name))
|
||||
for name in [tensor.name for tensor in packet.getRaw().tensors]
|
||||
}
|
||||
|
||||
|
||||
def to_planar(frame):
|
||||
return frame.transpose(2, 0, 1).flatten()
|
||||
|
||||
|
||||
class FramePublisher:
|
||||
def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int):
|
||||
self._mqtt_client = mqtt_client
|
||||
@ -22,6 +33,72 @@ class FramePublisher:
|
||||
logger.info("configure pipeline")
|
||||
pipeline = dai.Pipeline()
|
||||
|
||||
version = "2021.2"
|
||||
pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2)
|
||||
|
||||
# colorCam = pipeline.create(dai.node.ColorCamera)
|
||||
# colorCam.setPreviewSize(256, 256)
|
||||
# colorCam.setVideoSize(1024, 1024) # 4 times larger in both axis
|
||||
# colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
|
||||
# colorCam.setInterleaved(False)
|
||||
# colorCam.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
# colorCam.setFps(10)
|
||||
#
|
||||
# controlIn = pipeline.create(dai.node.XLinkIn)
|
||||
# controlIn.setStreamName('control')
|
||||
# controlIn.out.link(colorCam.inputControl)
|
||||
#
|
||||
# cam_xout = pipeline.create(dai.node.XLinkOut)
|
||||
# cam_xout.setStreamName('video')
|
||||
# colorCam.video.link(cam_xout.input)
|
||||
|
||||
# ---------------------------------------
|
||||
# 1st stage NN - text-detection
|
||||
# ---------------------------------------
|
||||
|
||||
nn = pipeline.create(dai.node.NeuralNetwork)
|
||||
nn.setBlobPath(
|
||||
blobconverter.from_zoo(name="east_text_detection_256x256", zoo_type="depthai", shaves=6, version=version))
|
||||
colorCam.preview.link(nn.input)
|
||||
|
||||
nn_xout = pipeline.create(dai.node.XLinkOut)
|
||||
nn_xout.setStreamName('detections')
|
||||
nn.out.link(nn_xout.input)
|
||||
|
||||
# ---------------------------------------
|
||||
# 2nd stage NN - text-recognition-0012
|
||||
# ---------------------------------------
|
||||
|
||||
manip = pipeline.create(dai.node.ImageManip)
|
||||
manip.setWaitForConfigInput(True)
|
||||
|
||||
manip_img = pipeline.create(dai.node.XLinkIn)
|
||||
manip_img.setStreamName('manip_img')
|
||||
manip_img.out.link(manip.inputImage)
|
||||
|
||||
manip_cfg = pipeline.create(dai.node.XLinkIn)
|
||||
manip_cfg.setStreamName('manip_cfg')
|
||||
manip_cfg.out.link(manip.inputConfig)
|
||||
|
||||
manip_xout = pipeline.create(dai.node.XLinkOut)
|
||||
manip_xout.setStreamName('manip_out')
|
||||
|
||||
nn2 = pipeline.create(dai.node.NeuralNetwork)
|
||||
nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version))
|
||||
nn2.setNumInferenceThreads(2)
|
||||
manip.out.link(nn2.input)
|
||||
manip.out.link(manip_xout.input)
|
||||
|
||||
nn2_xout = pipeline.create(dai.node.XLinkOut)
|
||||
nn2_xout.setStreamName("recognitions")
|
||||
nn2.out.link(nn2_xout.input)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
cam_rgb = pipeline.create(dai.node.ColorCamera)
|
||||
xout_rgb = pipeline.create(dai.node.XLinkOut)
|
||||
|
||||
@ -40,6 +117,150 @@ class FramePublisher:
|
||||
return pipeline
|
||||
|
||||
def run(self):
|
||||
|
||||
with dai.Device(self._pipeline) as device:
|
||||
q_vid = device.getOutputQueue("video", 4, blocking=False)
|
||||
# This should be set to block, but would get to some extreme queuing/latency!
|
||||
q_det = device.getOutputQueue("detections", 4, blocking=False)
|
||||
|
||||
q_rec = device.getOutputQueue("recognitions", 4, blocking=True)
|
||||
|
||||
q_manip_img = device.getInputQueue("manip_img")
|
||||
q_manip_cfg = device.getInputQueue("manip_cfg")
|
||||
q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False)
|
||||
|
||||
controlQueue = device.getInputQueue('control')
|
||||
|
||||
frame = None
|
||||
cropped_stacked = None
|
||||
rotated_rectangles = []
|
||||
rec_pushed = 0
|
||||
rec_received = 0
|
||||
host_sync = HostSeqSync()
|
||||
|
||||
characters = '0123456789abcdefghijklmnopqrstuvwxyz#'
|
||||
codec = CTCCodec(characters)
|
||||
|
||||
ctrl = dai.CameraControl()
|
||||
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO)
|
||||
ctrl.setAutoFocusTrigger()
|
||||
controlQueue.send(ctrl)
|
||||
|
||||
while True:
|
||||
vid_in = q_vid.tryGet()
|
||||
if vid_in is not None:
|
||||
host_sync.add_msg(vid_in)
|
||||
|
||||
# Multiple recognition results may be available, read until queue is empty
|
||||
while True:
|
||||
in_rec = q_rec.tryGet()
|
||||
if in_rec is None:
|
||||
break
|
||||
rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30, 1, 37)
|
||||
decoded_text = codec.decode(rec_data)[0]
|
||||
pos = rotated_rectangles[rec_received]
|
||||
print("{:2}: {:20}".format(rec_received, decoded_text),
|
||||
"center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format(
|
||||
int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2]))
|
||||
# Draw the text on the right side of 'cropped_stacked' - placeholder
|
||||
if cropped_stacked is not None:
|
||||
cv2.putText(cropped_stacked, decoded_text,
|
||||
(120 + 10, 32 * rec_received + 24),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
||||
cv2.imshow('cropped_stacked', cropped_stacked)
|
||||
rec_received += 1
|
||||
|
||||
if cv2.waitKey(1) == ord('q'):
|
||||
break
|
||||
|
||||
if rec_received >= rec_pushed:
|
||||
in_det = q_det.tryGet()
|
||||
if in_det is not None:
|
||||
frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy()
|
||||
|
||||
scores, geom1, geom2 = to_tensor_result(in_det).values()
|
||||
scores = np.reshape(scores, (1, 1, 64, 64))
|
||||
geom1 = np.reshape(geom1, (1, 4, 64, 64))
|
||||
geom2 = np.reshape(geom2, (1, 1, 64, 64))
|
||||
|
||||
bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2)
|
||||
boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
|
||||
rotated_rectangles = [
|
||||
east.get_cv_rotated_rect(bbox, angle * -1)
|
||||
for (bbox, angle) in zip(boxes, angles)
|
||||
]
|
||||
|
||||
rec_received = 0
|
||||
rec_pushed = len(rotated_rectangles)
|
||||
if rec_pushed:
|
||||
print("====== Pushing for recognition, count:", rec_pushed)
|
||||
cropped_stacked = None
|
||||
for idx, rotated_rect in enumerate(rotated_rectangles):
|
||||
# Detections are done on 256x256 frames, we are sending back 1024x1024
|
||||
# That's why we multiply center and size values by 4
|
||||
rotated_rect[0][0] = rotated_rect[0][0] * 4
|
||||
rotated_rect[0][1] = rotated_rect[0][1] * 4
|
||||
rotated_rect[1][0] = rotated_rect[1][0] * 4
|
||||
rotated_rect[1][1] = rotated_rect[1][1] * 4
|
||||
|
||||
# Draw detection crop area on input frame
|
||||
points = np.int0(cv2.boxPoints(rotated_rect))
|
||||
print(rotated_rect)
|
||||
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1,
|
||||
lineType=cv2.LINE_8)
|
||||
|
||||
# TODO make it work taking args like in OpenCV:
|
||||
# rr = ((256, 256), (128, 64), 30)
|
||||
rr = dai.RotatedRect()
|
||||
rr.center.x = rotated_rect[0][0]
|
||||
rr.center.y = rotated_rect[0][1]
|
||||
rr.size.width = rotated_rect[1][0]
|
||||
rr.size.height = rotated_rect[1][1]
|
||||
rr.angle = rotated_rect[2]
|
||||
cfg = dai.ImageManipConfig()
|
||||
cfg.setCropRotatedRect(rr, False)
|
||||
cfg.setResize(120, 32)
|
||||
# Send frame and config to device
|
||||
if idx == 0:
|
||||
w, h, c = frame.shape
|
||||
imgFrame = dai.ImgFrame()
|
||||
imgFrame.setData(to_planar(frame))
|
||||
imgFrame.setType(dai.ImgFrame.Type.BGR888p)
|
||||
imgFrame.setWidth(w)
|
||||
imgFrame.setHeight(h)
|
||||
q_manip_img.send(imgFrame)
|
||||
else:
|
||||
cfg.setReusePreviousImage(True)
|
||||
q_manip_cfg.send(cfg)
|
||||
|
||||
# Get manipulated image from the device
|
||||
transformed = q_manip_out.get().getCvFrame()
|
||||
|
||||
rec_placeholder_img = np.zeros((32, 200, 3), np.uint8)
|
||||
transformed = np.hstack((transformed, rec_placeholder_img))
|
||||
if cropped_stacked is None:
|
||||
cropped_stacked = transformed
|
||||
else:
|
||||
cropped_stacked = np.vstack((cropped_stacked, transformed))
|
||||
|
||||
if cropped_stacked is not None:
|
||||
cv2.imshow('cropped_stacked', cropped_stacked)
|
||||
|
||||
if frame is not None:
|
||||
cv2.imshow('frame', frame)
|
||||
|
||||
key = cv2.waitKey(1)
|
||||
if key == ord('q'):
|
||||
break
|
||||
elif key == ord('t'):
|
||||
print("Autofocus trigger (and disable continuous)")
|
||||
ctrl = dai.CameraControl()
|
||||
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO)
|
||||
ctrl.setAutoFocusTrigger()
|
||||
controlQueue.send(ctrl)
|
||||
|
||||
|
||||
|
||||
# Connect to device and start pipeline
|
||||
with dai.Device(self._pipeline) as device:
|
||||
logger.info('MxId: %s', device.getDeviceInfo().getMxId())
|
||||
|
232
camera/east.py
Normal file
232
camera/east.py
Normal file
@ -0,0 +1,232 @@
|
||||
import cv2
|
||||
import depthai
|
||||
import numpy as np
|
||||
|
||||
_conf_threshold = 0.5
|
||||
|
||||
|
||||
def get_cv_rotated_rect(bbox, angle):
|
||||
x0, y0, x1, y1 = bbox
|
||||
width = abs(x0 - x1)
|
||||
height = abs(y0 - y1)
|
||||
x = x0 + width * 0.5
|
||||
y = y0 + height * 0.5
|
||||
return [x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle)
|
||||
|
||||
|
||||
def rotated_Rectangle(bbox, angle):
|
||||
X0, Y0, X1, Y1 = bbox
|
||||
width = abs(X0 - X1)
|
||||
height = abs(Y0 - Y1)
|
||||
x = int(X0 + width * 0.5)
|
||||
y = int(Y0 + height * 0.5)
|
||||
|
||||
pt1_1 = (int(x + width / 2), int(y + height / 2))
|
||||
pt2_1 = (int(x + width / 2), int(y - height / 2))
|
||||
pt3_1 = (int(x - width / 2), int(y - height / 2))
|
||||
pt4_1 = (int(x - width / 2), int(y + height / 2))
|
||||
|
||||
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
|
||||
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
|
||||
[0, 0, 1]])
|
||||
|
||||
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
|
||||
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
|
||||
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
|
||||
|
||||
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
|
||||
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
|
||||
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
|
||||
|
||||
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
|
||||
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
|
||||
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
|
||||
|
||||
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
|
||||
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
|
||||
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
|
||||
|
||||
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
|
||||
|
||||
return points
|
||||
|
||||
|
||||
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
|
||||
# if there are no boxes, return an empty list
|
||||
if len(boxes) == 0:
|
||||
return [], []
|
||||
|
||||
# if the bounding boxes are integers, convert them to floats -- this
|
||||
# is important since we'll be doing a bunch of divisions
|
||||
if boxes.dtype.kind == "i":
|
||||
boxes = boxes.astype("float")
|
||||
|
||||
# initialize the list of picked indexes
|
||||
pick = []
|
||||
|
||||
# grab the coordinates of the bounding boxes
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
# compute the area of the bounding boxes and grab the indexes to sort
|
||||
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
idxs = y2
|
||||
|
||||
# if probabilities are provided, sort on them instead
|
||||
if probs is not None:
|
||||
idxs = probs
|
||||
|
||||
# sort the indexes
|
||||
idxs = np.argsort(idxs)
|
||||
|
||||
# keep looping while some indexes still remain in the indexes list
|
||||
while len(idxs) > 0:
|
||||
# grab the last index in the indexes list and add the index value to the list of picked indexes
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
|
||||
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates
|
||||
# for the end of the bounding box
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
|
||||
# compute the width and height of the bounding box
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
|
||||
# compute the ratio of overlap
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
|
||||
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
|
||||
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
|
||||
|
||||
# return only the bounding boxes that were picked
|
||||
return boxes[pick].astype("int"), angles[pick]
|
||||
|
||||
|
||||
def decode_predictions(scores, geometry1, geometry2):
|
||||
# grab the number of rows and columns from the scores volume, then
|
||||
# initialize our set of bounding box rectangles and corresponding
|
||||
# confidence scores
|
||||
(numRows, numCols) = scores.shape[2:4]
|
||||
rects = []
|
||||
confidences = []
|
||||
angles = []
|
||||
|
||||
# loop over the number of rows
|
||||
for y in range(0, numRows):
|
||||
# extract the scores (probabilities), followed by the
|
||||
# geometrical data used to derive potential bounding box
|
||||
# coordinates that surround text
|
||||
scoresData = scores[0, 0, y]
|
||||
xData0 = geometry1[0, 0, y]
|
||||
xData1 = geometry1[0, 1, y]
|
||||
xData2 = geometry1[0, 2, y]
|
||||
xData3 = geometry1[0, 3, y]
|
||||
anglesData = geometry2[0, 0, y]
|
||||
|
||||
# loop over the number of columns
|
||||
for x in range(0, numCols):
|
||||
# if our score does not have sufficient probability,
|
||||
# ignore it
|
||||
if scoresData[x] < _conf_threshold:
|
||||
continue
|
||||
|
||||
# compute the offset factor as our resulting feature
|
||||
# maps will be 4x smaller than the input image
|
||||
(offsetX, offsetY) = (x * 4.0, y * 4.0)
|
||||
|
||||
# extract the rotation angle for the prediction and
|
||||
# then compute the sin and cosine
|
||||
angle = anglesData[x]
|
||||
cos = np.cos(angle)
|
||||
sin = np.sin(angle)
|
||||
|
||||
# use the geometry volume to derive the width and height
|
||||
# of the bounding box
|
||||
h = xData0[x] + xData2[x]
|
||||
w = xData1[x] + xData3[x]
|
||||
|
||||
# compute both the starting and ending (x, y)-coordinates
|
||||
# for the text prediction bounding box
|
||||
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
|
||||
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
|
||||
startX = int(endX - w)
|
||||
startY = int(endY - h)
|
||||
|
||||
# add the bounding box coordinates and probability score
|
||||
# to our respective lists
|
||||
rects.append((startX, startY, endX, endY))
|
||||
confidences.append(scoresData[x])
|
||||
angles.append(angle)
|
||||
|
||||
# return a tuple of the bounding boxes and associated confidences
|
||||
return (rects, confidences, angles)
|
||||
|
||||
|
||||
def decode_east(nnet_packet, **kwargs):
|
||||
scores = nnet_packet.get_tensor(0)
|
||||
geometry1 = nnet_packet.get_tensor(1)
|
||||
geometry2 = nnet_packet.get_tensor(2)
|
||||
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
|
||||
)
|
||||
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
|
||||
boxesangles = (boxes, angles)
|
||||
return boxesangles
|
||||
|
||||
|
||||
def show_east(boxesangles, frame, **kwargs):
|
||||
bboxes = boxesangles[0]
|
||||
angles = boxesangles[1]
|
||||
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
|
||||
width = abs(X0 - X1)
|
||||
height = abs(Y0 - Y1)
|
||||
cX = int(X0 + width * 0.5)
|
||||
cY = int(Y0 + height * 0.5)
|
||||
|
||||
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
|
||||
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
|
||||
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def order_points(pts):
|
||||
rect = np.zeros((4, 2), dtype="float32")
|
||||
s = pts.sum(axis=1)
|
||||
rect[0] = pts[np.argmin(s)]
|
||||
rect[2] = pts[np.argmax(s)]
|
||||
diff = np.diff(pts, axis=1)
|
||||
rect[1] = pts[np.argmin(diff)]
|
||||
rect[3] = pts[np.argmax(diff)]
|
||||
return rect
|
||||
|
||||
|
||||
def four_point_transform(image, pts):
|
||||
rect = order_points(pts)
|
||||
(tl, tr, br, bl) = rect
|
||||
|
||||
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
|
||||
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
|
||||
maxWidth = max(int(widthA), int(widthB))
|
||||
|
||||
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
|
||||
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
|
||||
maxHeight = max(int(heightA), int(heightB))
|
||||
|
||||
dst = np.array([
|
||||
[0, 0],
|
||||
[maxWidth - 1, 0],
|
||||
[maxWidth - 1, maxHeight - 1],
|
||||
[0, maxHeight - 1]], dtype="float32")
|
||||
|
||||
M = cv2.getPerspectiveTransform(rect, dst)
|
||||
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
||||
|
||||
return warped
|
61
camera/text.py
Normal file
61
camera/text.py
Normal file
@ -0,0 +1,61 @@
|
||||
|
||||
class HostSeqSync:
|
||||
def __init__(self):
|
||||
self.imfFrames = []
|
||||
|
||||
def add_msg(self, msg):
|
||||
self.imfFrames.append(msg)
|
||||
|
||||
def get_msg(self, target_seq):
|
||||
for i, imgFrame in enumerate(self.imfFrames):
|
||||
if target_seq == imgFrame.getSequenceNum():
|
||||
self.imfFrames = self.imfFrames[i:]
|
||||
break
|
||||
return self.imfFrames[0]
|
||||
|
||||
|
||||
class CTCCodec(object):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self, characters):
|
||||
# characters (str): set of the possible characters.
|
||||
dict_character = list(characters)
|
||||
|
||||
self.dict = {}
|
||||
for i, char in enumerate(dict_character):
|
||||
self.dict[char] = i + 1
|
||||
|
||||
self.characters = dict_character
|
||||
# print(self.characters)
|
||||
# input()
|
||||
|
||||
def decode(self, preds):
|
||||
""" convert text-index into text-label. """
|
||||
texts = []
|
||||
index = 0
|
||||
# Select max probabilty (greedy decoding) then decode index to character
|
||||
preds = preds.astype(np.float16)
|
||||
preds_index = np.argmax(preds, 2)
|
||||
preds_index = preds_index.transpose(1, 0)
|
||||
preds_index_reshape = preds_index.reshape(-1)
|
||||
preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0])
|
||||
|
||||
for l in preds_sizes:
|
||||
t = preds_index_reshape[index:index + l]
|
||||
|
||||
# NOTE: t might be zero size
|
||||
if t.shape[0] == 0:
|
||||
continue
|
||||
|
||||
char_list = []
|
||||
for i in range(l):
|
||||
# removing repeated characters and blank.
|
||||
if not (i > 0 and t[i - 1] == t[i]):
|
||||
if self.characters[t[i]] != '#':
|
||||
char_list.append(self.characters[t[i]])
|
||||
text = ''.join(char_list)
|
||||
texts.append(text)
|
||||
|
||||
index += l
|
||||
|
||||
return texts
|
229
east.py
Normal file
229
east.py
Normal file
@ -0,0 +1,229 @@
|
||||
import cv2
|
||||
import depthai
|
||||
import numpy as np
|
||||
|
||||
_conf_threshold = 0.5
|
||||
|
||||
def get_cv_rotated_rect(bbox, angle):
|
||||
x0, y0, x1, y1 = bbox
|
||||
width = abs(x0 - x1)
|
||||
height = abs(y0 - y1)
|
||||
x = x0 + width * 0.5
|
||||
y = y0 + height * 0.5
|
||||
return ([x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle))
|
||||
|
||||
def rotated_Rectangle(bbox, angle):
|
||||
X0, Y0, X1, Y1 = bbox
|
||||
width = abs(X0 - X1)
|
||||
height = abs(Y0 - Y1)
|
||||
x = int(X0 + width * 0.5)
|
||||
y = int(Y0 + height * 0.5)
|
||||
|
||||
pt1_1 = (int(x + width / 2), int(y + height / 2))
|
||||
pt2_1 = (int(x + width / 2), int(y - height / 2))
|
||||
pt3_1 = (int(x - width / 2), int(y - height / 2))
|
||||
pt4_1 = (int(x - width / 2), int(y + height / 2))
|
||||
|
||||
t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)],
|
||||
[np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)],
|
||||
[0, 0, 1]])
|
||||
|
||||
tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]])
|
||||
tmp_pt1_2 = np.dot(t, tmp_pt1_1)
|
||||
pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0]))
|
||||
|
||||
tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]])
|
||||
tmp_pt2_2 = np.dot(t, tmp_pt2_1)
|
||||
pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0]))
|
||||
|
||||
tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]])
|
||||
tmp_pt3_2 = np.dot(t, tmp_pt3_1)
|
||||
pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0]))
|
||||
|
||||
tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]])
|
||||
tmp_pt4_2 = np.dot(t, tmp_pt4_1)
|
||||
pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0]))
|
||||
|
||||
points = np.array([pt1_2, pt2_2, pt3_2, pt4_2])
|
||||
|
||||
return points
|
||||
|
||||
|
||||
def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3):
|
||||
# if there are no boxes, return an empty list
|
||||
if len(boxes) == 0:
|
||||
return [], []
|
||||
|
||||
# if the bounding boxes are integers, convert them to floats -- this
|
||||
# is important since we'll be doing a bunch of divisions
|
||||
if boxes.dtype.kind == "i":
|
||||
boxes = boxes.astype("float")
|
||||
|
||||
# initialize the list of picked indexes
|
||||
pick = []
|
||||
|
||||
# grab the coordinates of the bounding boxes
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
# compute the area of the bounding boxes and grab the indexes to sort
|
||||
# (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate)
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
idxs = y2
|
||||
|
||||
# if probabilities are provided, sort on them instead
|
||||
if probs is not None:
|
||||
idxs = probs
|
||||
|
||||
# sort the indexes
|
||||
idxs = np.argsort(idxs)
|
||||
|
||||
# keep looping while some indexes still remain in the indexes list
|
||||
while len(idxs) > 0:
|
||||
# grab the last index in the indexes list and add the index value to the list of picked indexes
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
|
||||
# find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates for the end of the bounding box
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
|
||||
# compute the width and height of the bounding box
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
|
||||
# compute the ratio of overlap
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
|
||||
# delete all indexes from the index list that have overlap greater than the provided overlap threshold
|
||||
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0])))
|
||||
|
||||
# return only the bounding boxes that were picked
|
||||
return boxes[pick].astype("int"), angles[pick]
|
||||
|
||||
|
||||
def decode_predictions(scores, geometry1, geometry2):
|
||||
# grab the number of rows and columns from the scores volume, then
|
||||
# initialize our set of bounding box rectangles and corresponding
|
||||
# confidence scores
|
||||
(numRows, numCols) = scores.shape[2:4]
|
||||
rects = []
|
||||
confidences = []
|
||||
angles = []
|
||||
|
||||
# loop over the number of rows
|
||||
for y in range(0, numRows):
|
||||
# extract the scores (probabilities), followed by the
|
||||
# geometrical data used to derive potential bounding box
|
||||
# coordinates that surround text
|
||||
scoresData = scores[0, 0, y]
|
||||
xData0 = geometry1[0, 0, y]
|
||||
xData1 = geometry1[0, 1, y]
|
||||
xData2 = geometry1[0, 2, y]
|
||||
xData3 = geometry1[0, 3, y]
|
||||
anglesData = geometry2[0, 0, y]
|
||||
|
||||
# loop over the number of columns
|
||||
for x in range(0, numCols):
|
||||
# if our score does not have sufficient probability,
|
||||
# ignore it
|
||||
if scoresData[x] < _conf_threshold:
|
||||
continue
|
||||
|
||||
# compute the offset factor as our resulting feature
|
||||
# maps will be 4x smaller than the input image
|
||||
(offsetX, offsetY) = (x * 4.0, y * 4.0)
|
||||
|
||||
# extract the rotation angle for the prediction and
|
||||
# then compute the sin and cosine
|
||||
angle = anglesData[x]
|
||||
cos = np.cos(angle)
|
||||
sin = np.sin(angle)
|
||||
|
||||
# use the geometry volume to derive the width and height
|
||||
# of the bounding box
|
||||
h = xData0[x] + xData2[x]
|
||||
w = xData1[x] + xData3[x]
|
||||
|
||||
# compute both the starting and ending (x, y)-coordinates
|
||||
# for the text prediction bounding box
|
||||
endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x]))
|
||||
endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x]))
|
||||
startX = int(endX - w)
|
||||
startY = int(endY - h)
|
||||
|
||||
# add the bounding box coordinates and probability score
|
||||
# to our respective lists
|
||||
rects.append((startX, startY, endX, endY))
|
||||
confidences.append(scoresData[x])
|
||||
angles.append(angle)
|
||||
|
||||
# return a tuple of the bounding boxes and associated confidences
|
||||
return (rects, confidences, angles)
|
||||
|
||||
|
||||
def decode_east(nnet_packet, **kwargs):
|
||||
scores = nnet_packet.get_tensor(0)
|
||||
geometry1 = nnet_packet.get_tensor(1)
|
||||
geometry2 = nnet_packet.get_tensor(2)
|
||||
bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2
|
||||
)
|
||||
boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
|
||||
boxesangles = (boxes, angles)
|
||||
return boxesangles
|
||||
|
||||
|
||||
def show_east(boxesangles, frame, **kwargs):
|
||||
bboxes = boxesangles[0]
|
||||
angles = boxesangles[1]
|
||||
for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles):
|
||||
width = abs(X0 - X1)
|
||||
height = abs(Y0 - Y1)
|
||||
cX = int(X0 + width * 0.5)
|
||||
cY = int(Y0 + height * 0.5)
|
||||
|
||||
rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1))
|
||||
points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1)
|
||||
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def order_points(pts):
|
||||
rect = np.zeros((4, 2), dtype="float32")
|
||||
s = pts.sum(axis=1)
|
||||
rect[0] = pts[np.argmin(s)]
|
||||
rect[2] = pts[np.argmax(s)]
|
||||
diff = np.diff(pts, axis=1)
|
||||
rect[1] = pts[np.argmin(diff)]
|
||||
rect[3] = pts[np.argmax(diff)]
|
||||
return rect
|
||||
|
||||
|
||||
def four_point_transform(image, pts):
|
||||
rect = order_points(pts)
|
||||
(tl, tr, br, bl) = rect
|
||||
|
||||
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
|
||||
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
|
||||
maxWidth = max(int(widthA), int(widthB))
|
||||
|
||||
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
|
||||
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
|
||||
maxHeight = max(int(heightA), int(heightB))
|
||||
|
||||
dst = np.array([
|
||||
[0, 0],
|
||||
[maxWidth - 1, 0],
|
||||
[maxWidth - 1, maxHeight - 1],
|
||||
[0, maxHeight - 1]], dtype="float32")
|
||||
|
||||
M = cv2.getPerspectiveTransform(rect, dst)
|
||||
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
||||
|
||||
return warped
|
@ -1,11 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
||||
# source: events/events.proto
|
||||
|
||||
from google.protobuf.internal import enum_type_wrapper
|
||||
"""Generated protocol buffer code."""
|
||||
from google.protobuf.internal import builder as _builder
|
||||
from google.protobuf import descriptor as _descriptor
|
||||
from google.protobuf import message as _message
|
||||
from google.protobuf import reflection as _reflection
|
||||
from google.protobuf import descriptor_pool as _descriptor_pool
|
||||
from google.protobuf import symbol_database as _symbol_database
|
||||
# @@protoc_insertion_point(imports)
|
||||
|
||||
@ -15,744 +14,40 @@ _sym_db = _symbol_database.Default()
|
||||
from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2
|
||||
|
||||
|
||||
DESCRIPTOR = _descriptor.FileDescriptor(
|
||||
name='events/events.proto',
|
||||
package='robocar.events',
|
||||
syntax='proto3',
|
||||
serialized_options=b'Z\006events',
|
||||
create_key=_descriptor._internal_create_key,
|
||||
serialized_pb=b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x05\x12\x0b\n\x03top\x18\x03 \x01(\x05\x12\r\n\x05right\x18\x04 \x01(\x05\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x05\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\x08Z\x06\x65ventsb\x06proto3'
|
||||
,
|
||||
dependencies=[google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,])
|
||||
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x05\x12\x0b\n\x03top\x18\x03 \x01(\x05\x12\r\n\x05right\x18\x04 \x01(\x05\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x05\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3')
|
||||
|
||||
_DRIVEMODE = _descriptor.EnumDescriptor(
|
||||
name='DriveMode',
|
||||
full_name='robocar.events.DriveMode',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
values=[
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='INVALID', index=0, number=0,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='USER', index=1, number=1,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='PILOT', index=2, number=2,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
containing_type=None,
|
||||
serialized_options=None,
|
||||
serialized_start=1196,
|
||||
serialized_end=1241,
|
||||
)
|
||||
_sym_db.RegisterEnumDescriptor(_DRIVEMODE)
|
||||
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
|
||||
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'events.events_pb2', globals())
|
||||
if _descriptor._USE_C_DESCRIPTORS == False:
|
||||
|
||||
DriveMode = enum_type_wrapper.EnumTypeWrapper(_DRIVEMODE)
|
||||
_TYPEOBJECT = _descriptor.EnumDescriptor(
|
||||
name='TypeObject',
|
||||
full_name='robocar.events.TypeObject',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
values=[
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='ANY', index=0, number=0,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='CAR', index=1, number=1,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='BUMP', index=2, number=2,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
_descriptor.EnumValueDescriptor(
|
||||
name='PLOT', index=3, number=3,
|
||||
serialized_options=None,
|
||||
type=None,
|
||||
create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
containing_type=None,
|
||||
serialized_options=None,
|
||||
serialized_start=1243,
|
||||
serialized_end=1293,
|
||||
)
|
||||
_sym_db.RegisterEnumDescriptor(_TYPEOBJECT)
|
||||
|
||||
TypeObject = enum_type_wrapper.EnumTypeWrapper(_TYPEOBJECT)
|
||||
INVALID = 0
|
||||
USER = 1
|
||||
PILOT = 2
|
||||
ANY = 0
|
||||
CAR = 1
|
||||
BUMP = 2
|
||||
PLOT = 3
|
||||
|
||||
|
||||
|
||||
_FRAMEREF = _descriptor.Descriptor(
|
||||
name='FrameRef',
|
||||
full_name='robocar.events.FrameRef',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='name', full_name='robocar.events.FrameRef.name', index=0,
|
||||
number=1, type=9, cpp_type=9, label=1,
|
||||
has_default_value=False, default_value=b"".decode('utf-8'),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='id', full_name='robocar.events.FrameRef.id', index=1,
|
||||
number=2, type=9, cpp_type=9, label=1,
|
||||
has_default_value=False, default_value=b"".decode('utf-8'),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='created_at', full_name='robocar.events.FrameRef.created_at', index=2,
|
||||
number=3, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=72,
|
||||
serialized_end=156,
|
||||
)
|
||||
|
||||
|
||||
_FRAMEMESSAGE = _descriptor.Descriptor(
|
||||
name='FrameMessage',
|
||||
full_name='robocar.events.FrameMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='id', full_name='robocar.events.FrameMessage.id', index=0,
|
||||
number=1, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame', full_name='robocar.events.FrameMessage.frame', index=1,
|
||||
number=2, type=12, cpp_type=9, label=1,
|
||||
has_default_value=False, default_value=b"",
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=158,
|
||||
serialized_end=225,
|
||||
)
|
||||
|
||||
|
||||
_STEERINGMESSAGE = _descriptor.Descriptor(
|
||||
name='SteeringMessage',
|
||||
full_name='robocar.events.SteeringMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='steering', full_name='robocar.events.SteeringMessage.steering', index=0,
|
||||
number=1, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='confidence', full_name='robocar.events.SteeringMessage.confidence', index=1,
|
||||
number=2, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame_ref', full_name='robocar.events.SteeringMessage.frame_ref', index=2,
|
||||
number=3, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=227,
|
||||
serialized_end=327,
|
||||
)
|
||||
|
||||
|
||||
_THROTTLEMESSAGE = _descriptor.Descriptor(
|
||||
name='ThrottleMessage',
|
||||
full_name='robocar.events.ThrottleMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='throttle', full_name='robocar.events.ThrottleMessage.throttle', index=0,
|
||||
number=1, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='confidence', full_name='robocar.events.ThrottleMessage.confidence', index=1,
|
||||
number=2, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame_ref', full_name='robocar.events.ThrottleMessage.frame_ref', index=2,
|
||||
number=3, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=329,
|
||||
serialized_end=429,
|
||||
)
|
||||
|
||||
|
||||
_DRIVEMODEMESSAGE = _descriptor.Descriptor(
|
||||
name='DriveModeMessage',
|
||||
full_name='robocar.events.DriveModeMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='drive_mode', full_name='robocar.events.DriveModeMessage.drive_mode', index=0,
|
||||
number=1, type=14, cpp_type=8, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=431,
|
||||
serialized_end=496,
|
||||
)
|
||||
|
||||
|
||||
_OBJECTSMESSAGE = _descriptor.Descriptor(
|
||||
name='ObjectsMessage',
|
||||
full_name='robocar.events.ObjectsMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='objects', full_name='robocar.events.ObjectsMessage.objects', index=0,
|
||||
number=1, type=11, cpp_type=10, label=3,
|
||||
has_default_value=False, default_value=[],
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame_ref', full_name='robocar.events.ObjectsMessage.frame_ref', index=1,
|
||||
number=2, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=498,
|
||||
serialized_end=600,
|
||||
)
|
||||
|
||||
|
||||
_OBJECT = _descriptor.Descriptor(
|
||||
name='Object',
|
||||
full_name='robocar.events.Object',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='type', full_name='robocar.events.Object.type', index=0,
|
||||
number=1, type=14, cpp_type=8, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='left', full_name='robocar.events.Object.left', index=1,
|
||||
number=2, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='top', full_name='robocar.events.Object.top', index=2,
|
||||
number=3, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='right', full_name='robocar.events.Object.right', index=3,
|
||||
number=4, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='bottom', full_name='robocar.events.Object.bottom', index=4,
|
||||
number=5, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='confidence', full_name='robocar.events.Object.confidence', index=5,
|
||||
number=6, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=603,
|
||||
serialized_end=731,
|
||||
)
|
||||
|
||||
|
||||
_SWITCHRECORDMESSAGE = _descriptor.Descriptor(
|
||||
name='SwitchRecordMessage',
|
||||
full_name='robocar.events.SwitchRecordMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='enabled', full_name='robocar.events.SwitchRecordMessage.enabled', index=0,
|
||||
number=1, type=8, cpp_type=7, label=1,
|
||||
has_default_value=False, default_value=False,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=733,
|
||||
serialized_end=771,
|
||||
)
|
||||
|
||||
|
||||
_ROADMESSAGE = _descriptor.Descriptor(
|
||||
name='RoadMessage',
|
||||
full_name='robocar.events.RoadMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='contour', full_name='robocar.events.RoadMessage.contour', index=0,
|
||||
number=1, type=11, cpp_type=10, label=3,
|
||||
has_default_value=False, default_value=[],
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='ellipse', full_name='robocar.events.RoadMessage.ellipse', index=1,
|
||||
number=2, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame_ref', full_name='robocar.events.RoadMessage.frame_ref', index=2,
|
||||
number=3, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=774,
|
||||
serialized_end=914,
|
||||
)
|
||||
|
||||
|
||||
_POINT = _descriptor.Descriptor(
|
||||
name='Point',
|
||||
full_name='robocar.events.Point',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='x', full_name='robocar.events.Point.x', index=0,
|
||||
number=1, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='y', full_name='robocar.events.Point.y', index=1,
|
||||
number=2, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=916,
|
||||
serialized_end=945,
|
||||
)
|
||||
|
||||
|
||||
_ELLIPSE = _descriptor.Descriptor(
|
||||
name='Ellipse',
|
||||
full_name='robocar.events.Ellipse',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='center', full_name='robocar.events.Ellipse.center', index=0,
|
||||
number=1, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='width', full_name='robocar.events.Ellipse.width', index=1,
|
||||
number=2, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='height', full_name='robocar.events.Ellipse.height', index=2,
|
||||
number=3, type=5, cpp_type=1, label=1,
|
||||
has_default_value=False, default_value=0,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='angle', full_name='robocar.events.Ellipse.angle', index=3,
|
||||
number=4, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='confidence', full_name='robocar.events.Ellipse.confidence', index=4,
|
||||
number=5, type=2, cpp_type=6, label=1,
|
||||
has_default_value=False, default_value=float(0),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=947,
|
||||
serialized_end=1061,
|
||||
)
|
||||
|
||||
|
||||
_RECORDMESSAGE = _descriptor.Descriptor(
|
||||
name='RecordMessage',
|
||||
full_name='robocar.events.RecordMessage',
|
||||
filename=None,
|
||||
file=DESCRIPTOR,
|
||||
containing_type=None,
|
||||
create_key=_descriptor._internal_create_key,
|
||||
fields=[
|
||||
_descriptor.FieldDescriptor(
|
||||
name='frame', full_name='robocar.events.RecordMessage.frame', index=0,
|
||||
number=1, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='steering', full_name='robocar.events.RecordMessage.steering', index=1,
|
||||
number=2, type=11, cpp_type=10, label=1,
|
||||
has_default_value=False, default_value=None,
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
_descriptor.FieldDescriptor(
|
||||
name='recordSet', full_name='robocar.events.RecordMessage.recordSet', index=2,
|
||||
number=3, type=9, cpp_type=9, label=1,
|
||||
has_default_value=False, default_value=b"".decode('utf-8'),
|
||||
message_type=None, enum_type=None, containing_type=None,
|
||||
is_extension=False, extension_scope=None,
|
||||
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
||||
],
|
||||
extensions=[
|
||||
],
|
||||
nested_types=[],
|
||||
enum_types=[
|
||||
],
|
||||
serialized_options=None,
|
||||
is_extendable=False,
|
||||
syntax='proto3',
|
||||
extension_ranges=[],
|
||||
oneofs=[
|
||||
],
|
||||
serialized_start=1064,
|
||||
serialized_end=1194,
|
||||
)
|
||||
|
||||
_FRAMEREF.fields_by_name['created_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP
|
||||
_FRAMEMESSAGE.fields_by_name['id'].message_type = _FRAMEREF
|
||||
_STEERINGMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF
|
||||
_THROTTLEMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF
|
||||
_DRIVEMODEMESSAGE.fields_by_name['drive_mode'].enum_type = _DRIVEMODE
|
||||
_OBJECTSMESSAGE.fields_by_name['objects'].message_type = _OBJECT
|
||||
_OBJECTSMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF
|
||||
_OBJECT.fields_by_name['type'].enum_type = _TYPEOBJECT
|
||||
_ROADMESSAGE.fields_by_name['contour'].message_type = _POINT
|
||||
_ROADMESSAGE.fields_by_name['ellipse'].message_type = _ELLIPSE
|
||||
_ROADMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF
|
||||
_ELLIPSE.fields_by_name['center'].message_type = _POINT
|
||||
_RECORDMESSAGE.fields_by_name['frame'].message_type = _FRAMEMESSAGE
|
||||
_RECORDMESSAGE.fields_by_name['steering'].message_type = _STEERINGMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['FrameRef'] = _FRAMEREF
|
||||
DESCRIPTOR.message_types_by_name['FrameMessage'] = _FRAMEMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['SteeringMessage'] = _STEERINGMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['ThrottleMessage'] = _THROTTLEMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['DriveModeMessage'] = _DRIVEMODEMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['ObjectsMessage'] = _OBJECTSMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['Object'] = _OBJECT
|
||||
DESCRIPTOR.message_types_by_name['SwitchRecordMessage'] = _SWITCHRECORDMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['RoadMessage'] = _ROADMESSAGE
|
||||
DESCRIPTOR.message_types_by_name['Point'] = _POINT
|
||||
DESCRIPTOR.message_types_by_name['Ellipse'] = _ELLIPSE
|
||||
DESCRIPTOR.message_types_by_name['RecordMessage'] = _RECORDMESSAGE
|
||||
DESCRIPTOR.enum_types_by_name['DriveMode'] = _DRIVEMODE
|
||||
DESCRIPTOR.enum_types_by_name['TypeObject'] = _TYPEOBJECT
|
||||
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
|
||||
|
||||
FrameRef = _reflection.GeneratedProtocolMessageType('FrameRef', (_message.Message,), {
|
||||
'DESCRIPTOR' : _FRAMEREF,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.FrameRef)
|
||||
})
|
||||
_sym_db.RegisterMessage(FrameRef)
|
||||
|
||||
FrameMessage = _reflection.GeneratedProtocolMessageType('FrameMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _FRAMEMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.FrameMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(FrameMessage)
|
||||
|
||||
SteeringMessage = _reflection.GeneratedProtocolMessageType('SteeringMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _STEERINGMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.SteeringMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(SteeringMessage)
|
||||
|
||||
ThrottleMessage = _reflection.GeneratedProtocolMessageType('ThrottleMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _THROTTLEMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.ThrottleMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(ThrottleMessage)
|
||||
|
||||
DriveModeMessage = _reflection.GeneratedProtocolMessageType('DriveModeMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _DRIVEMODEMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.DriveModeMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(DriveModeMessage)
|
||||
|
||||
ObjectsMessage = _reflection.GeneratedProtocolMessageType('ObjectsMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _OBJECTSMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.ObjectsMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(ObjectsMessage)
|
||||
|
||||
Object = _reflection.GeneratedProtocolMessageType('Object', (_message.Message,), {
|
||||
'DESCRIPTOR' : _OBJECT,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.Object)
|
||||
})
|
||||
_sym_db.RegisterMessage(Object)
|
||||
|
||||
SwitchRecordMessage = _reflection.GeneratedProtocolMessageType('SwitchRecordMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _SWITCHRECORDMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.SwitchRecordMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(SwitchRecordMessage)
|
||||
|
||||
RoadMessage = _reflection.GeneratedProtocolMessageType('RoadMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _ROADMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.RoadMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(RoadMessage)
|
||||
|
||||
Point = _reflection.GeneratedProtocolMessageType('Point', (_message.Message,), {
|
||||
'DESCRIPTOR' : _POINT,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.Point)
|
||||
})
|
||||
_sym_db.RegisterMessage(Point)
|
||||
|
||||
Ellipse = _reflection.GeneratedProtocolMessageType('Ellipse', (_message.Message,), {
|
||||
'DESCRIPTOR' : _ELLIPSE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.Ellipse)
|
||||
})
|
||||
_sym_db.RegisterMessage(Ellipse)
|
||||
|
||||
RecordMessage = _reflection.GeneratedProtocolMessageType('RecordMessage', (_message.Message,), {
|
||||
'DESCRIPTOR' : _RECORDMESSAGE,
|
||||
'__module__' : 'events.events_pb2'
|
||||
# @@protoc_insertion_point(class_scope:robocar.events.RecordMessage)
|
||||
})
|
||||
_sym_db.RegisterMessage(RecordMessage)
|
||||
|
||||
|
||||
DESCRIPTOR._options = None
|
||||
DESCRIPTOR._options = None
|
||||
DESCRIPTOR._serialized_options = b'Z\010./events'
|
||||
_DRIVEMODE._serialized_start=1196
|
||||
_DRIVEMODE._serialized_end=1241
|
||||
_TYPEOBJECT._serialized_start=1243
|
||||
_TYPEOBJECT._serialized_end=1293
|
||||
_FRAMEREF._serialized_start=72
|
||||
_FRAMEREF._serialized_end=156
|
||||
_FRAMEMESSAGE._serialized_start=158
|
||||
_FRAMEMESSAGE._serialized_end=225
|
||||
_STEERINGMESSAGE._serialized_start=227
|
||||
_STEERINGMESSAGE._serialized_end=327
|
||||
_THROTTLEMESSAGE._serialized_start=329
|
||||
_THROTTLEMESSAGE._serialized_end=429
|
||||
_DRIVEMODEMESSAGE._serialized_start=431
|
||||
_DRIVEMODEMESSAGE._serialized_end=496
|
||||
_OBJECTSMESSAGE._serialized_start=498
|
||||
_OBJECTSMESSAGE._serialized_end=600
|
||||
_OBJECT._serialized_start=603
|
||||
_OBJECT._serialized_end=731
|
||||
_SWITCHRECORDMESSAGE._serialized_start=733
|
||||
_SWITCHRECORDMESSAGE._serialized_end=771
|
||||
_ROADMESSAGE._serialized_start=774
|
||||
_ROADMESSAGE._serialized_end=914
|
||||
_POINT._serialized_start=916
|
||||
_POINT._serialized_end=945
|
||||
_ELLIPSE._serialized_start=947
|
||||
_ELLIPSE._serialized_end=1061
|
||||
_RECORDMESSAGE._serialized_start=1064
|
||||
_RECORDMESSAGE._serialized_end=1194
|
||||
# @@protoc_insertion_point(module_scope)
|
||||
|
274
main.py
Normal file
274
main.py
Normal file
@ -0,0 +1,274 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import depthai as dai
|
||||
import east
|
||||
import blobconverter
|
||||
|
||||
class HostSeqSync:
|
||||
def __init__(self):
|
||||
self.imfFrames = []
|
||||
def add_msg(self, msg):
|
||||
self.imfFrames.append(msg)
|
||||
def get_msg(self, target_seq):
|
||||
for i, imgFrame in enumerate(self.imfFrames):
|
||||
if target_seq == imgFrame.getSequenceNum():
|
||||
self.imfFrames = self.imfFrames[i:]
|
||||
break
|
||||
return self.imfFrames[0]
|
||||
|
||||
pipeline = dai.Pipeline()
|
||||
version = "2021.2"
|
||||
pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2)
|
||||
|
||||
colorCam = pipeline.create(dai.node.ColorCamera)
|
||||
colorCam.setPreviewSize(256, 256)
|
||||
colorCam.setVideoSize(1024, 1024) # 4 times larger in both axis
|
||||
colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
|
||||
colorCam.setInterleaved(False)
|
||||
colorCam.setBoardSocket(dai.CameraBoardSocket.RGB)
|
||||
colorCam.setFps(10)
|
||||
|
||||
controlIn = pipeline.create(dai.node.XLinkIn)
|
||||
controlIn.setStreamName('control')
|
||||
controlIn.out.link(colorCam.inputControl)
|
||||
|
||||
cam_xout = pipeline.create(dai.node.XLinkOut)
|
||||
cam_xout.setStreamName('video')
|
||||
colorCam.video.link(cam_xout.input)
|
||||
|
||||
# ---------------------------------------
|
||||
# 1st stage NN - text-detection
|
||||
# ---------------------------------------
|
||||
|
||||
nn = pipeline.create(dai.node.NeuralNetwork)
|
||||
nn.setBlobPath(blobconverter.from_zoo(name="east_text_detection_256x256",zoo_type="depthai",shaves=6, version=version))
|
||||
colorCam.preview.link(nn.input)
|
||||
|
||||
nn_xout = pipeline.create(dai.node.XLinkOut)
|
||||
nn_xout.setStreamName('detections')
|
||||
nn.out.link(nn_xout.input)
|
||||
|
||||
# ---------------------------------------
|
||||
# 2nd stage NN - text-recognition-0012
|
||||
# ---------------------------------------
|
||||
|
||||
manip = pipeline.create(dai.node.ImageManip)
|
||||
manip.setWaitForConfigInput(True)
|
||||
|
||||
manip_img = pipeline.create(dai.node.XLinkIn)
|
||||
manip_img.setStreamName('manip_img')
|
||||
manip_img.out.link(manip.inputImage)
|
||||
|
||||
manip_cfg = pipeline.create(dai.node.XLinkIn)
|
||||
manip_cfg.setStreamName('manip_cfg')
|
||||
manip_cfg.out.link(manip.inputConfig)
|
||||
|
||||
manip_xout = pipeline.create(dai.node.XLinkOut)
|
||||
manip_xout.setStreamName('manip_out')
|
||||
|
||||
nn2 = pipeline.create(dai.node.NeuralNetwork)
|
||||
nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version))
|
||||
nn2.setNumInferenceThreads(2)
|
||||
manip.out.link(nn2.input)
|
||||
manip.out.link(manip_xout.input)
|
||||
|
||||
nn2_xout = pipeline.create(dai.node.XLinkOut)
|
||||
nn2_xout.setStreamName("recognitions")
|
||||
nn2.out.link(nn2_xout.input)
|
||||
|
||||
def to_tensor_result(packet):
|
||||
return {
|
||||
name: np.array(packet.getLayerFp16(name))
|
||||
for name in [tensor.name for tensor in packet.getRaw().tensors]
|
||||
}
|
||||
|
||||
def to_planar(frame):
|
||||
return frame.transpose(2, 0, 1).flatten()
|
||||
|
||||
with dai.Device(pipeline) as device:
|
||||
q_vid = device.getOutputQueue("video", 4, blocking=False)
|
||||
# This should be set to block, but would get to some extreme queuing/latency!
|
||||
q_det = device.getOutputQueue("detections", 4, blocking=False)
|
||||
|
||||
q_rec = device.getOutputQueue("recognitions", 4, blocking=True)
|
||||
|
||||
q_manip_img = device.getInputQueue("manip_img")
|
||||
q_manip_cfg = device.getInputQueue("manip_cfg")
|
||||
q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False)
|
||||
|
||||
controlQueue = device.getInputQueue('control')
|
||||
|
||||
frame = None
|
||||
cropped_stacked = None
|
||||
rotated_rectangles = []
|
||||
rec_pushed = 0
|
||||
rec_received = 0
|
||||
host_sync = HostSeqSync()
|
||||
|
||||
class CTCCodec(object):
|
||||
""" Convert between text-label and text-index """
|
||||
def __init__(self, characters):
|
||||
# characters (str): set of the possible characters.
|
||||
dict_character = list(characters)
|
||||
|
||||
self.dict = {}
|
||||
for i, char in enumerate(dict_character):
|
||||
self.dict[char] = i + 1
|
||||
|
||||
self.characters = dict_character
|
||||
#print(self.characters)
|
||||
#input()
|
||||
def decode(self, preds):
|
||||
""" convert text-index into text-label. """
|
||||
texts = []
|
||||
index = 0
|
||||
# Select max probabilty (greedy decoding) then decode index to character
|
||||
preds = preds.astype(np.float16)
|
||||
preds_index = np.argmax(preds, 2)
|
||||
preds_index = preds_index.transpose(1, 0)
|
||||
preds_index_reshape = preds_index.reshape(-1)
|
||||
preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0])
|
||||
|
||||
for l in preds_sizes:
|
||||
t = preds_index_reshape[index:index + l]
|
||||
|
||||
# NOTE: t might be zero size
|
||||
if t.shape[0] == 0:
|
||||
continue
|
||||
|
||||
char_list = []
|
||||
for i in range(l):
|
||||
# removing repeated characters and blank.
|
||||
if not (i > 0 and t[i - 1] == t[i]):
|
||||
if self.characters[t[i]] != '#':
|
||||
char_list.append(self.characters[t[i]])
|
||||
text = ''.join(char_list)
|
||||
texts.append(text)
|
||||
|
||||
index += l
|
||||
|
||||
return texts
|
||||
|
||||
characters = '0123456789abcdefghijklmnopqrstuvwxyz#'
|
||||
codec = CTCCodec(characters)
|
||||
|
||||
ctrl = dai.CameraControl()
|
||||
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO)
|
||||
ctrl.setAutoFocusTrigger()
|
||||
controlQueue.send(ctrl)
|
||||
|
||||
while True:
|
||||
vid_in = q_vid.tryGet()
|
||||
if vid_in is not None:
|
||||
host_sync.add_msg(vid_in)
|
||||
|
||||
# Multiple recognition results may be available, read until queue is empty
|
||||
while True:
|
||||
in_rec = q_rec.tryGet()
|
||||
if in_rec is None:
|
||||
break
|
||||
rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30,1,37)
|
||||
decoded_text = codec.decode(rec_data)[0]
|
||||
pos = rotated_rectangles[rec_received]
|
||||
print("{:2}: {:20}".format(rec_received, decoded_text),
|
||||
"center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format(
|
||||
int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2]))
|
||||
# Draw the text on the right side of 'cropped_stacked' - placeholder
|
||||
if cropped_stacked is not None:
|
||||
cv2.putText(cropped_stacked, decoded_text,
|
||||
(120 + 10 , 32 * rec_received + 24),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2)
|
||||
cv2.imshow('cropped_stacked', cropped_stacked)
|
||||
rec_received += 1
|
||||
|
||||
if cv2.waitKey(1) == ord('q'):
|
||||
break
|
||||
|
||||
if rec_received >= rec_pushed:
|
||||
in_det = q_det.tryGet()
|
||||
if in_det is not None:
|
||||
frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy()
|
||||
|
||||
scores, geom1, geom2 = to_tensor_result(in_det).values()
|
||||
scores = np.reshape(scores, (1, 1, 64, 64))
|
||||
geom1 = np.reshape(geom1, (1, 4, 64, 64))
|
||||
geom2 = np.reshape(geom2, (1, 1, 64, 64))
|
||||
|
||||
bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2)
|
||||
boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles))
|
||||
rotated_rectangles = [
|
||||
east.get_cv_rotated_rect(bbox, angle * -1)
|
||||
for (bbox, angle) in zip(boxes, angles)
|
||||
]
|
||||
|
||||
rec_received = 0
|
||||
rec_pushed = len(rotated_rectangles)
|
||||
if rec_pushed:
|
||||
print("====== Pushing for recognition, count:", rec_pushed)
|
||||
cropped_stacked = None
|
||||
for idx, rotated_rect in enumerate(rotated_rectangles):
|
||||
# Detections are done on 256x256 frames, we are sending back 1024x1024
|
||||
# That's why we multiply center and size values by 4
|
||||
rotated_rect[0][0] = rotated_rect[0][0] * 4
|
||||
rotated_rect[0][1] = rotated_rect[0][1] * 4
|
||||
rotated_rect[1][0] = rotated_rect[1][0] * 4
|
||||
rotated_rect[1][1] = rotated_rect[1][1] * 4
|
||||
|
||||
# Draw detection crop area on input frame
|
||||
points = np.int0(cv2.boxPoints(rotated_rect))
|
||||
print(rotated_rect)
|
||||
cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8)
|
||||
|
||||
# TODO make it work taking args like in OpenCV:
|
||||
# rr = ((256, 256), (128, 64), 30)
|
||||
rr = dai.RotatedRect()
|
||||
rr.center.x = rotated_rect[0][0]
|
||||
rr.center.y = rotated_rect[0][1]
|
||||
rr.size.width = rotated_rect[1][0]
|
||||
rr.size.height = rotated_rect[1][1]
|
||||
rr.angle = rotated_rect[2]
|
||||
cfg = dai.ImageManipConfig()
|
||||
cfg.setCropRotatedRect(rr, False)
|
||||
cfg.setResize(120, 32)
|
||||
# Send frame and config to device
|
||||
if idx == 0:
|
||||
w,h,c = frame.shape
|
||||
imgFrame = dai.ImgFrame()
|
||||
imgFrame.setData(to_planar(frame))
|
||||
imgFrame.setType(dai.ImgFrame.Type.BGR888p)
|
||||
imgFrame.setWidth(w)
|
||||
imgFrame.setHeight(h)
|
||||
q_manip_img.send(imgFrame)
|
||||
else:
|
||||
cfg.setReusePreviousImage(True)
|
||||
q_manip_cfg.send(cfg)
|
||||
|
||||
# Get manipulated image from the device
|
||||
transformed = q_manip_out.get().getCvFrame()
|
||||
|
||||
rec_placeholder_img = np.zeros((32, 200, 3), np.uint8)
|
||||
transformed = np.hstack((transformed, rec_placeholder_img))
|
||||
if cropped_stacked is None:
|
||||
cropped_stacked = transformed
|
||||
else:
|
||||
cropped_stacked = np.vstack((cropped_stacked, transformed))
|
||||
|
||||
if cropped_stacked is not None:
|
||||
cv2.imshow('cropped_stacked', cropped_stacked)
|
||||
|
||||
if frame is not None:
|
||||
cv2.imshow('frame', frame)
|
||||
|
||||
key = cv2.waitKey(1)
|
||||
if key == ord('q'):
|
||||
break
|
||||
elif key == ord('t'):
|
||||
print("Autofocus trigger (and disable continuous)")
|
||||
ctrl = dai.CameraControl()
|
||||
ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO)
|
||||
ctrl.setAutoFocusTrigger()
|
||||
controlQueue.send(ctrl)
|
@ -4,4 +4,6 @@ depthai==2.14.1.0
|
||||
opencv-python~=4.5.5.62
|
||||
google~=3.0.0
|
||||
google-api-core~=2.4.0
|
||||
setuptools==60.5.0
|
||||
setuptools==60.5.0
|
||||
protobuf3
|
||||
blobconverter>=1.2.9
|
Loading…
Reference in New Issue
Block a user