2022-08-21 20:31:19 +00:00
|
|
|
#include "video.h"
|
|
|
|
|
|
|
|
BackgroundSubtractorMOG2 BackgroundSubtractorMOG2_Create() {
|
|
|
|
return new cv::Ptr<cv::BackgroundSubtractorMOG2>(cv::createBackgroundSubtractorMOG2());
|
|
|
|
}
|
|
|
|
|
|
|
|
BackgroundSubtractorMOG2 BackgroundSubtractorMOG2_CreateWithParams(int history, double varThreshold, bool detectShadows) {
|
|
|
|
return new cv::Ptr<cv::BackgroundSubtractorMOG2>(cv::createBackgroundSubtractorMOG2(history,varThreshold,detectShadows));
|
|
|
|
}
|
|
|
|
|
|
|
|
BackgroundSubtractorKNN BackgroundSubtractorKNN_Create() {
|
|
|
|
return new cv::Ptr<cv::BackgroundSubtractorKNN>(cv::createBackgroundSubtractorKNN());
|
|
|
|
}
|
|
|
|
|
|
|
|
BackgroundSubtractorKNN BackgroundSubtractorKNN_CreateWithParams(int history, double dist2Threshold, bool detectShadows) {
|
|
|
|
return new cv::Ptr<cv::BackgroundSubtractorKNN>(cv::createBackgroundSubtractorKNN(history,dist2Threshold,detectShadows));
|
|
|
|
}
|
|
|
|
|
|
|
|
void BackgroundSubtractorMOG2_Close(BackgroundSubtractorMOG2 b) {
|
|
|
|
delete b;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BackgroundSubtractorMOG2_Apply(BackgroundSubtractorMOG2 b, Mat src, Mat dst) {
|
|
|
|
(*b)->apply(*src, *dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BackgroundSubtractorKNN_Close(BackgroundSubtractorKNN k) {
|
|
|
|
delete k;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BackgroundSubtractorKNN_Apply(BackgroundSubtractorKNN k, Mat src, Mat dst) {
|
|
|
|
(*k)->apply(*src, *dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CalcOpticalFlowFarneback(Mat prevImg, Mat nextImg, Mat flow, double scale, int levels,
|
|
|
|
int winsize, int iterations, int polyN, double polySigma, int flags) {
|
|
|
|
cv::calcOpticalFlowFarneback(*prevImg, *nextImg, *flow, scale, levels, winsize, iterations, polyN,
|
|
|
|
polySigma, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CalcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status, Mat err) {
|
|
|
|
cv::calcOpticalFlowPyrLK(*prevImg, *nextImg, *prevPts, *nextPts, *status, *err);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CalcOpticalFlowPyrLKWithParams(Mat prevImg, Mat nextImg, Mat prevPts, Mat nextPts, Mat status, Mat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold){
|
|
|
|
cv::Size sz(winSize.width, winSize.height);
|
|
|
|
cv::calcOpticalFlowPyrLK(*prevImg, *nextImg, *prevPts, *nextPts, *status, *err, sz, maxLevel, *criteria, flags, minEigThreshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
double FindTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize){
|
|
|
|
return cv::findTransformECC(*templateImage, *inputImage, *warpMatrix, motionType, *criteria, *inputMask, gaussFiltSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Tracker_Init(Tracker self, Mat image, Rect boundingBox) {
|
|
|
|
cv::Rect bb(boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height);
|
|
|
|
|
|
|
|
(*self)->init(*image, bb);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Tracker_Update(Tracker self, Mat image, Rect* boundingBox) {
|
|
|
|
cv::Rect bb;
|
|
|
|
bool ret = (*self)->update(*image, bb);
|
|
|
|
boundingBox->x = int(bb.x);
|
|
|
|
boundingBox->y = int(bb.y);
|
|
|
|
boundingBox->width = int(bb.width);
|
|
|
|
boundingBox->height = int(bb.height);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
TrackerMIL TrackerMIL_Create() {
|
|
|
|
return new cv::Ptr<cv::TrackerMIL>(cv::TrackerMIL::create());
|
|
|
|
}
|
|
|
|
|
|
|
|
void TrackerMIL_Close(TrackerMIL self) {
|
|
|
|
delete self;
|
|
|
|
}
|
2023-10-15 09:53:35 +00:00
|
|
|
|
|
|
|
KalmanFilter KalmanFilter_New(int dynamParams, int measureParams) {
|
|
|
|
return new cv::KalmanFilter(dynamParams, measureParams, 0, CV_32F);
|
|
|
|
}
|
|
|
|
|
|
|
|
KalmanFilter KalmanFilter_NewWithParams(int dynamParams, int measureParams, int controlParams, int type) {
|
|
|
|
return new cv::KalmanFilter(dynamParams, measureParams, controlParams, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_Init(KalmanFilter kf, int dynamParams, int measureParams) {
|
|
|
|
kf->init(dynamParams, measureParams, 0, CV_32F);
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_InitWithParams(KalmanFilter kf, int dynamParams, int measureParams, int controlParams, int type) {
|
|
|
|
kf->init(dynamParams, measureParams, controlParams, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_Close(KalmanFilter kf) {
|
|
|
|
delete kf;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_Predict(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->predict());
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_PredictWithParams(KalmanFilter kf, Mat control) {
|
|
|
|
return new cv::Mat(kf->predict(*control));
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_Correct(KalmanFilter kf, Mat measurement) {
|
|
|
|
return new cv::Mat(kf->correct(*measurement));
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetStatePre(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->statePre);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetStatePost(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->statePost);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTransitionMatrix(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->transitionMatrix);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetControlMatrix(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->controlMatrix);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetMeasurementMatrix(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->measurementMatrix);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetProcessNoiseCov(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->processNoiseCov);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetMeasurementNoiseCov(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->measurementNoiseCov);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetErrorCovPre(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->errorCovPre);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetGain(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->gain);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetErrorCovPost(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->errorCovPost);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTemp1(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->temp1);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTemp2(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->temp2);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTemp3(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->temp3);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTemp4(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->temp4);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat KalmanFilter_GetTemp5(KalmanFilter kf) {
|
|
|
|
return new cv::Mat(kf->temp5);
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetStatePre(KalmanFilter kf, Mat statePre) {
|
|
|
|
kf->statePre = *statePre;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetStatePost(KalmanFilter kf, Mat statePost) {
|
|
|
|
kf->statePost = *statePost;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetTransitionMatrix(KalmanFilter kf, Mat transitionMatrix) {
|
|
|
|
kf->transitionMatrix = *transitionMatrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetControlMatrix(KalmanFilter kf, Mat controlMatrix) {
|
|
|
|
kf->controlMatrix = *controlMatrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetMeasurementMatrix(KalmanFilter kf, Mat measurementMatrix) {
|
|
|
|
kf->measurementMatrix = *measurementMatrix;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetProcessNoiseCov(KalmanFilter kf, Mat processNoiseCov) {
|
|
|
|
kf->processNoiseCov = *processNoiseCov;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetMeasurementNoiseCov(KalmanFilter kf, Mat measurementNoiseCov) {
|
|
|
|
kf->measurementNoiseCov = *measurementNoiseCov;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetErrorCovPre(KalmanFilter kf, Mat errorCovPre) {
|
|
|
|
kf->errorCovPre = *errorCovPre;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetGain(KalmanFilter kf, Mat gain) {
|
|
|
|
kf->gain = *gain;
|
|
|
|
}
|
|
|
|
|
|
|
|
void KalmanFilter_SetErrorCovPost(KalmanFilter kf, Mat errorCovPost) {
|
|
|
|
kf->errorCovPost = *errorCovPost;
|
|
|
|
}
|