refactor: compute only angle value
This commit is contained in:
parent
37bb0fff2d
commit
2076b4491a
@ -21,11 +21,7 @@ from tensorflow.python.client import device_lib
|
||||
def get_data(root_dir, filename):
|
||||
print('load data from file ' + filename)
|
||||
d = json.load(open(os.path.join(root_dir, filename)))
|
||||
if 'pilot/throttle' in d:
|
||||
return [d['user/mode'], d['user/throttle'], d['user/angle'], root_dir, d['cam/image_array'],
|
||||
d['pilot/throttle'], d['pilot/angle']]
|
||||
else:
|
||||
return [d['user/mode'], d['user/throttle'], d['user/angle'], root_dir, d['cam/image_array']]
|
||||
return [d['user/angle'], root_dir, d['cam/image_array']]
|
||||
|
||||
|
||||
numbers = re.compile(r'(\d+)')
|
||||
@ -58,36 +54,19 @@ def train():
|
||||
data.extend(
|
||||
[get_data(root, f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
|
||||
|
||||
# Normalize / correct data
|
||||
# data = [d for d in data if d[1] > 0.1]
|
||||
# for d in data:
|
||||
# if d[1] < 0.2:
|
||||
# d[1] = 0.2
|
||||
|
||||
# ### Loading throttle and angle ###
|
||||
|
||||
angle = [d[2] for d in data]
|
||||
throttle = [d[1] for d in data]
|
||||
angle = [d[0] for d in data]
|
||||
angle_array = np.array(angle)
|
||||
throttle_array = np.array(throttle)
|
||||
|
||||
if len(data[0]) > 5:
|
||||
pilot_angle = [d[6] for d in data]
|
||||
pilot_throttle = [d[5] for d in data]
|
||||
pilot_angle_array = np.array(pilot_angle)
|
||||
pilot_throttle_array = np.array(pilot_throttle)
|
||||
else:
|
||||
pilot_angle = []
|
||||
pilot_throttle = []
|
||||
|
||||
# ### Loading images ###
|
||||
images = np.array([img_to_array(load_img(os.path.join(d[3], d[4]))) for d in data], 'f')
|
||||
images = np.array([img_to_array(load_img(os.path.join(d[1], d[2]))) for d in data], 'f')
|
||||
|
||||
# slide images vs orders
|
||||
if env.hyperparameters.get('with_slide', False):
|
||||
images = images[:len(images) - 2]
|
||||
angle_array = angle_array[2:]
|
||||
throttle_array = throttle_array[2:]
|
||||
|
||||
# ### Start training ###
|
||||
def linear_bin(a):
|
||||
@ -109,19 +88,20 @@ def train():
|
||||
sess = tf.Session()
|
||||
K.set_session(sess)
|
||||
|
||||
# First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
img_in = Input(shape=(128, 160, 3),
|
||||
name='img_in') # First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
name='img_in')
|
||||
x = img_in
|
||||
x = Convolution2D(24, (5, 5), strides=(2, 2), activation='relu')(
|
||||
x) # 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
|
||||
x = Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')(
|
||||
x) # 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
|
||||
x = Convolution2D(64, (5, 5), strides=(2, 2), activation='relu')(
|
||||
x) # 64 features, 5px5p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(2, 2), activation='relu')(
|
||||
x) # 64 features, 3px3p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(1, 1), activation='relu')(
|
||||
x) # 64 features, 3px3p kernal window, 1wx1h stride, relu
|
||||
# 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
|
||||
x = Convolution2D(24, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
|
||||
x = Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 5px5p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 3px3p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 3px3p kernal window, 1wx1h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(1, 1), activation='relu')(x)
|
||||
|
||||
# Possibly add MaxPooling (will make it less sensitive to position in image). Camera angle fixed, so may not to be needed
|
||||
|
||||
@ -129,21 +109,20 @@ def train():
|
||||
x = Dense(100, activation='relu')(x) # Classify the data into 100 features, make all negatives 0
|
||||
x = Dropout(.1)(x)
|
||||
x = Dense(50, activation='relu')(x)
|
||||
x = Dropout(.1)(x) # Randomly drop out 10% of the neurons (Prevent overfitting)
|
||||
# Randomly drop out 10% of the neurons (Prevent overfitting)
|
||||
x = Dropout(.1)(x)
|
||||
# categorical output of the angle
|
||||
callbacks_list = [save_best, early_stop, logs]
|
||||
angle_out = Dense(15, activation='softmax', name='angle_out')(
|
||||
x) # Connect every input with every output and output 15 hidden units. Use Softmax to give percentage. 15 categories and find best one based off percentage 0.0-1.0
|
||||
# Connect every input with every output and output 15 hidden units. Use Softmax to give percentage.
|
||||
# 15 categories and find best one based off percentage 0.0-1.0
|
||||
angle_out = Dense(15, activation='softmax', name='angle_out')(x)
|
||||
|
||||
# continous output of throttle
|
||||
throttle_out = Dense(1, activation='relu', name='throttle_out')(x) # Reduce to 1 number, Positive number only
|
||||
angle_cat_array = np.array([linear_bin(a) for a in angle_array])
|
||||
model = Model(inputs=[img_in], outputs=[angle_out, throttle_out])
|
||||
model = Model(inputs=[img_in], outputs=[angle_out])
|
||||
model.compile(optimizer='adam',
|
||||
loss={'angle_out': 'categorical_crossentropy',
|
||||
'throttle_out': 'mean_absolute_error'},
|
||||
loss_weights={'angle_out': 0.9, 'throttle_out': .001})
|
||||
model.fit({'img_in': images}, {'angle_out': angle_cat_array, 'throttle_out': throttle_array}, batch_size=32,
|
||||
loss={'angle_out': 'categorical_crossentropy', },
|
||||
loss_weights={'angle_out': 0.9 })
|
||||
model.fit({'img_in': images}, {'angle_out': angle_cat_array, }, batch_size=32,
|
||||
epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
|
||||
|
||||
# Save model for tensorflow using
|
||||
|
Loading…
Reference in New Issue
Block a user