Compare commits
	
		
			2 Commits
		
	
	
		
			master
			...
			feat/text_
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 0467ab780c | |||
| 2c9c7d9078 | 
| @@ -10,6 +10,17 @@ import cv2 | |||||||
| logger = logging.getLogger(__name__) | logger = logging.getLogger(__name__) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def to_tensor_result(packet): | ||||||
|  |     return { | ||||||
|  |         name: np.array(packet.getLayerFp16(name)) | ||||||
|  |         for name in [tensor.name for tensor in packet.getRaw().tensors] | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def to_planar(frame): | ||||||
|  |     return frame.transpose(2, 0, 1).flatten() | ||||||
|  |  | ||||||
|  |  | ||||||
| class FramePublisher: | class FramePublisher: | ||||||
|     def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int): |     def __init__(self, mqtt_client: mqtt.Client, frame_topic: str, img_width: int, img_height: int): | ||||||
|         self._mqtt_client = mqtt_client |         self._mqtt_client = mqtt_client | ||||||
| @@ -22,6 +33,72 @@ class FramePublisher: | |||||||
|         logger.info("configure pipeline") |         logger.info("configure pipeline") | ||||||
|         pipeline = dai.Pipeline() |         pipeline = dai.Pipeline() | ||||||
|  |  | ||||||
|  |         version = "2021.2" | ||||||
|  |         pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2) | ||||||
|  |  | ||||||
|  |         # colorCam = pipeline.create(dai.node.ColorCamera) | ||||||
|  |         # colorCam.setPreviewSize(256, 256) | ||||||
|  |         # colorCam.setVideoSize(1024, 1024)  # 4 times larger in both axis | ||||||
|  |         # colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) | ||||||
|  |         # colorCam.setInterleaved(False) | ||||||
|  |         # colorCam.setBoardSocket(dai.CameraBoardSocket.RGB) | ||||||
|  |         # colorCam.setFps(10) | ||||||
|  |         # | ||||||
|  |         # controlIn = pipeline.create(dai.node.XLinkIn) | ||||||
|  |         # controlIn.setStreamName('control') | ||||||
|  |         # controlIn.out.link(colorCam.inputControl) | ||||||
|  |         # | ||||||
|  |         # cam_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  |         # cam_xout.setStreamName('video') | ||||||
|  |         # colorCam.video.link(cam_xout.input) | ||||||
|  |  | ||||||
|  |         # --------------------------------------- | ||||||
|  |         # 1st stage NN - text-detection | ||||||
|  |         # --------------------------------------- | ||||||
|  |  | ||||||
|  |         nn = pipeline.create(dai.node.NeuralNetwork) | ||||||
|  |         nn.setBlobPath( | ||||||
|  |             blobconverter.from_zoo(name="east_text_detection_256x256", zoo_type="depthai", shaves=6, version=version)) | ||||||
|  |         colorCam.preview.link(nn.input) | ||||||
|  |  | ||||||
|  |         nn_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  |         nn_xout.setStreamName('detections') | ||||||
|  |         nn.out.link(nn_xout.input) | ||||||
|  |  | ||||||
|  |         # --------------------------------------- | ||||||
|  |         # 2nd stage NN - text-recognition-0012 | ||||||
|  |         # --------------------------------------- | ||||||
|  |  | ||||||
|  |         manip = pipeline.create(dai.node.ImageManip) | ||||||
|  |         manip.setWaitForConfigInput(True) | ||||||
|  |  | ||||||
|  |         manip_img = pipeline.create(dai.node.XLinkIn) | ||||||
|  |         manip_img.setStreamName('manip_img') | ||||||
|  |         manip_img.out.link(manip.inputImage) | ||||||
|  |  | ||||||
|  |         manip_cfg = pipeline.create(dai.node.XLinkIn) | ||||||
|  |         manip_cfg.setStreamName('manip_cfg') | ||||||
|  |         manip_cfg.out.link(manip.inputConfig) | ||||||
|  |  | ||||||
|  |         manip_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  |         manip_xout.setStreamName('manip_out') | ||||||
|  |  | ||||||
|  |         nn2 = pipeline.create(dai.node.NeuralNetwork) | ||||||
|  |         nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version)) | ||||||
|  |         nn2.setNumInferenceThreads(2) | ||||||
|  |         manip.out.link(nn2.input) | ||||||
|  |         manip.out.link(manip_xout.input) | ||||||
|  |  | ||||||
|  |         nn2_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  |         nn2_xout.setStreamName("recognitions") | ||||||
|  |         nn2.out.link(nn2_xout.input) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|         cam_rgb = pipeline.create(dai.node.ColorCamera) |         cam_rgb = pipeline.create(dai.node.ColorCamera) | ||||||
|         xout_rgb = pipeline.create(dai.node.XLinkOut) |         xout_rgb = pipeline.create(dai.node.XLinkOut) | ||||||
|  |  | ||||||
| @@ -40,6 +117,150 @@ class FramePublisher: | |||||||
|         return pipeline |         return pipeline | ||||||
|  |  | ||||||
|     def run(self): |     def run(self): | ||||||
|  |  | ||||||
|  |         with dai.Device(self._pipeline) as device: | ||||||
|  |             q_vid = device.getOutputQueue("video", 4, blocking=False) | ||||||
|  |             # This should be set to block, but would get to some extreme queuing/latency! | ||||||
|  |             q_det = device.getOutputQueue("detections", 4, blocking=False) | ||||||
|  |  | ||||||
|  |             q_rec = device.getOutputQueue("recognitions", 4, blocking=True) | ||||||
|  |  | ||||||
|  |             q_manip_img = device.getInputQueue("manip_img") | ||||||
|  |             q_manip_cfg = device.getInputQueue("manip_cfg") | ||||||
|  |             q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False) | ||||||
|  |  | ||||||
|  |             controlQueue = device.getInputQueue('control') | ||||||
|  |  | ||||||
|  |             frame = None | ||||||
|  |             cropped_stacked = None | ||||||
|  |             rotated_rectangles = [] | ||||||
|  |             rec_pushed = 0 | ||||||
|  |             rec_received = 0 | ||||||
|  |             host_sync = HostSeqSync() | ||||||
|  |  | ||||||
|  |             characters = '0123456789abcdefghijklmnopqrstuvwxyz#' | ||||||
|  |             codec = CTCCodec(characters) | ||||||
|  |  | ||||||
|  |             ctrl = dai.CameraControl() | ||||||
|  |             ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO) | ||||||
|  |             ctrl.setAutoFocusTrigger() | ||||||
|  |             controlQueue.send(ctrl) | ||||||
|  |  | ||||||
|  |             while True: | ||||||
|  |                 vid_in = q_vid.tryGet() | ||||||
|  |                 if vid_in is not None: | ||||||
|  |                     host_sync.add_msg(vid_in) | ||||||
|  |  | ||||||
|  |                 # Multiple recognition results may be available, read until queue is empty | ||||||
|  |                 while True: | ||||||
|  |                     in_rec = q_rec.tryGet() | ||||||
|  |                     if in_rec is None: | ||||||
|  |                         break | ||||||
|  |                     rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30, 1, 37) | ||||||
|  |                     decoded_text = codec.decode(rec_data)[0] | ||||||
|  |                     pos = rotated_rectangles[rec_received] | ||||||
|  |                     print("{:2}: {:20}".format(rec_received, decoded_text), | ||||||
|  |                           "center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format( | ||||||
|  |                               int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2])) | ||||||
|  |                     # Draw the text on the right side of 'cropped_stacked' - placeholder | ||||||
|  |                     if cropped_stacked is not None: | ||||||
|  |                         cv2.putText(cropped_stacked, decoded_text, | ||||||
|  |                                     (120 + 10, 32 * rec_received + 24), | ||||||
|  |                                     cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) | ||||||
|  |                         cv2.imshow('cropped_stacked', cropped_stacked) | ||||||
|  |                     rec_received += 1 | ||||||
|  |  | ||||||
|  |                 if cv2.waitKey(1) == ord('q'): | ||||||
|  |                     break | ||||||
|  |  | ||||||
|  |                 if rec_received >= rec_pushed: | ||||||
|  |                     in_det = q_det.tryGet() | ||||||
|  |                     if in_det is not None: | ||||||
|  |                         frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy() | ||||||
|  |  | ||||||
|  |                         scores, geom1, geom2 = to_tensor_result(in_det).values() | ||||||
|  |                         scores = np.reshape(scores, (1, 1, 64, 64)) | ||||||
|  |                         geom1 = np.reshape(geom1, (1, 4, 64, 64)) | ||||||
|  |                         geom2 = np.reshape(geom2, (1, 1, 64, 64)) | ||||||
|  |  | ||||||
|  |                         bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2) | ||||||
|  |                         boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles)) | ||||||
|  |                         rotated_rectangles = [ | ||||||
|  |                             east.get_cv_rotated_rect(bbox, angle * -1) | ||||||
|  |                             for (bbox, angle) in zip(boxes, angles) | ||||||
|  |                         ] | ||||||
|  |  | ||||||
|  |                         rec_received = 0 | ||||||
|  |                         rec_pushed = len(rotated_rectangles) | ||||||
|  |                         if rec_pushed: | ||||||
|  |                             print("====== Pushing for recognition, count:", rec_pushed) | ||||||
|  |                         cropped_stacked = None | ||||||
|  |                         for idx, rotated_rect in enumerate(rotated_rectangles): | ||||||
|  |                             # Detections are done on 256x256 frames, we are sending back 1024x1024 | ||||||
|  |                             # That's why we multiply center and size values by 4 | ||||||
|  |                             rotated_rect[0][0] = rotated_rect[0][0] * 4 | ||||||
|  |                             rotated_rect[0][1] = rotated_rect[0][1] * 4 | ||||||
|  |                             rotated_rect[1][0] = rotated_rect[1][0] * 4 | ||||||
|  |                             rotated_rect[1][1] = rotated_rect[1][1] * 4 | ||||||
|  |  | ||||||
|  |                             # Draw detection crop area on input frame | ||||||
|  |                             points = np.int0(cv2.boxPoints(rotated_rect)) | ||||||
|  |                             print(rotated_rect) | ||||||
|  |                             cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, | ||||||
|  |                                           lineType=cv2.LINE_8) | ||||||
|  |  | ||||||
|  |                             # TODO make it work taking args like in OpenCV: | ||||||
|  |                             # rr = ((256, 256), (128, 64), 30) | ||||||
|  |                             rr = dai.RotatedRect() | ||||||
|  |                             rr.center.x = rotated_rect[0][0] | ||||||
|  |                             rr.center.y = rotated_rect[0][1] | ||||||
|  |                             rr.size.width = rotated_rect[1][0] | ||||||
|  |                             rr.size.height = rotated_rect[1][1] | ||||||
|  |                             rr.angle = rotated_rect[2] | ||||||
|  |                             cfg = dai.ImageManipConfig() | ||||||
|  |                             cfg.setCropRotatedRect(rr, False) | ||||||
|  |                             cfg.setResize(120, 32) | ||||||
|  |                             # Send frame and config to device | ||||||
|  |                             if idx == 0: | ||||||
|  |                                 w, h, c = frame.shape | ||||||
|  |                                 imgFrame = dai.ImgFrame() | ||||||
|  |                                 imgFrame.setData(to_planar(frame)) | ||||||
|  |                                 imgFrame.setType(dai.ImgFrame.Type.BGR888p) | ||||||
|  |                                 imgFrame.setWidth(w) | ||||||
|  |                                 imgFrame.setHeight(h) | ||||||
|  |                                 q_manip_img.send(imgFrame) | ||||||
|  |                             else: | ||||||
|  |                                 cfg.setReusePreviousImage(True) | ||||||
|  |                             q_manip_cfg.send(cfg) | ||||||
|  |  | ||||||
|  |                             # Get manipulated image from the device | ||||||
|  |                             transformed = q_manip_out.get().getCvFrame() | ||||||
|  |  | ||||||
|  |                             rec_placeholder_img = np.zeros((32, 200, 3), np.uint8) | ||||||
|  |                             transformed = np.hstack((transformed, rec_placeholder_img)) | ||||||
|  |                             if cropped_stacked is None: | ||||||
|  |                                 cropped_stacked = transformed | ||||||
|  |                             else: | ||||||
|  |                                 cropped_stacked = np.vstack((cropped_stacked, transformed)) | ||||||
|  |  | ||||||
|  |                 if cropped_stacked is not None: | ||||||
|  |                     cv2.imshow('cropped_stacked', cropped_stacked) | ||||||
|  |  | ||||||
|  |                 if frame is not None: | ||||||
|  |                     cv2.imshow('frame', frame) | ||||||
|  |  | ||||||
|  |                 key = cv2.waitKey(1) | ||||||
|  |                 if key == ord('q'): | ||||||
|  |                     break | ||||||
|  |                 elif key == ord('t'): | ||||||
|  |                     print("Autofocus trigger (and disable continuous)") | ||||||
|  |                     ctrl = dai.CameraControl() | ||||||
|  |                     ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO) | ||||||
|  |                     ctrl.setAutoFocusTrigger() | ||||||
|  |                     controlQueue.send(ctrl) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|         # Connect to device and start pipeline |         # Connect to device and start pipeline | ||||||
|         with dai.Device(self._pipeline) as device: |         with dai.Device(self._pipeline) as device: | ||||||
|             logger.info('MxId: %s', device.getDeviceInfo().getMxId()) |             logger.info('MxId: %s', device.getDeviceInfo().getMxId()) | ||||||
|   | |||||||
							
								
								
									
										232
									
								
								camera/east.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										232
									
								
								camera/east.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,232 @@ | |||||||
|  | import cv2 | ||||||
|  | import depthai | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | _conf_threshold = 0.5 | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_cv_rotated_rect(bbox, angle): | ||||||
|  |     x0, y0, x1, y1 = bbox | ||||||
|  |     width = abs(x0 - x1) | ||||||
|  |     height = abs(y0 - y1) | ||||||
|  |     x = x0 + width * 0.5 | ||||||
|  |     y = y0 + height * 0.5 | ||||||
|  |     return [x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def rotated_Rectangle(bbox, angle): | ||||||
|  |     X0, Y0, X1, Y1 = bbox | ||||||
|  |     width = abs(X0 - X1) | ||||||
|  |     height = abs(Y0 - Y1) | ||||||
|  |     x = int(X0 + width * 0.5) | ||||||
|  |     y = int(Y0 + height * 0.5) | ||||||
|  |  | ||||||
|  |     pt1_1 = (int(x + width / 2), int(y + height / 2)) | ||||||
|  |     pt2_1 = (int(x + width / 2), int(y - height / 2)) | ||||||
|  |     pt3_1 = (int(x - width / 2), int(y - height / 2)) | ||||||
|  |     pt4_1 = (int(x - width / 2), int(y + height / 2)) | ||||||
|  |  | ||||||
|  |     t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)], | ||||||
|  |                   [np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)], | ||||||
|  |                   [0, 0, 1]]) | ||||||
|  |  | ||||||
|  |     tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]]) | ||||||
|  |     tmp_pt1_2 = np.dot(t, tmp_pt1_1) | ||||||
|  |     pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]]) | ||||||
|  |     tmp_pt2_2 = np.dot(t, tmp_pt2_1) | ||||||
|  |     pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]]) | ||||||
|  |     tmp_pt3_2 = np.dot(t, tmp_pt3_1) | ||||||
|  |     pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]]) | ||||||
|  |     tmp_pt4_2 = np.dot(t, tmp_pt4_1) | ||||||
|  |     pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0])) | ||||||
|  |  | ||||||
|  |     points = np.array([pt1_2, pt2_2, pt3_2, pt4_2]) | ||||||
|  |  | ||||||
|  |     return points | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3): | ||||||
|  |     # if there are no boxes, return an empty list | ||||||
|  |     if len(boxes) == 0: | ||||||
|  |         return [], [] | ||||||
|  |  | ||||||
|  |     # if the bounding boxes are integers, convert them to floats -- this | ||||||
|  |     # is important since we'll be doing a bunch of divisions | ||||||
|  |     if boxes.dtype.kind == "i": | ||||||
|  |         boxes = boxes.astype("float") | ||||||
|  |  | ||||||
|  |     # initialize the list of picked indexes | ||||||
|  |     pick = [] | ||||||
|  |  | ||||||
|  |     # grab the coordinates of the bounding boxes | ||||||
|  |     x1 = boxes[:, 0] | ||||||
|  |     y1 = boxes[:, 1] | ||||||
|  |     x2 = boxes[:, 2] | ||||||
|  |     y2 = boxes[:, 3] | ||||||
|  |  | ||||||
|  |     # compute the area of the bounding boxes and grab the indexes to sort | ||||||
|  |     # (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate) | ||||||
|  |     area = (x2 - x1 + 1) * (y2 - y1 + 1) | ||||||
|  |     idxs = y2 | ||||||
|  |  | ||||||
|  |     # if probabilities are provided, sort on them instead | ||||||
|  |     if probs is not None: | ||||||
|  |         idxs = probs | ||||||
|  |  | ||||||
|  |     # sort the indexes | ||||||
|  |     idxs = np.argsort(idxs) | ||||||
|  |  | ||||||
|  |     # keep looping while some indexes still remain in the indexes list | ||||||
|  |     while len(idxs) > 0: | ||||||
|  |         # grab the last index in the indexes list and add the index value to the list of picked indexes | ||||||
|  |         last = len(idxs) - 1 | ||||||
|  |         i = idxs[last] | ||||||
|  |         pick.append(i) | ||||||
|  |  | ||||||
|  |         # find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates | ||||||
|  |         # for the end of the bounding box | ||||||
|  |         xx1 = np.maximum(x1[i], x1[idxs[:last]]) | ||||||
|  |         yy1 = np.maximum(y1[i], y1[idxs[:last]]) | ||||||
|  |         xx2 = np.minimum(x2[i], x2[idxs[:last]]) | ||||||
|  |         yy2 = np.minimum(y2[i], y2[idxs[:last]]) | ||||||
|  |  | ||||||
|  |         # compute the width and height of the bounding box | ||||||
|  |         w = np.maximum(0, xx2 - xx1 + 1) | ||||||
|  |         h = np.maximum(0, yy2 - yy1 + 1) | ||||||
|  |  | ||||||
|  |         # compute the ratio of overlap | ||||||
|  |         overlap = (w * h) / area[idxs[:last]] | ||||||
|  |  | ||||||
|  |         # delete all indexes from the index list that have overlap greater than the provided overlap threshold | ||||||
|  |         idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))) | ||||||
|  |  | ||||||
|  |     # return only the bounding boxes that were picked | ||||||
|  |     return boxes[pick].astype("int"), angles[pick] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def decode_predictions(scores, geometry1, geometry2): | ||||||
|  |     # grab the number of rows and columns from the scores volume, then | ||||||
|  |     # initialize our set of bounding box rectangles and corresponding | ||||||
|  |     # confidence scores | ||||||
|  |     (numRows, numCols) = scores.shape[2:4] | ||||||
|  |     rects = [] | ||||||
|  |     confidences = [] | ||||||
|  |     angles = [] | ||||||
|  |  | ||||||
|  |     # loop over the number of rows | ||||||
|  |     for y in range(0, numRows): | ||||||
|  |         # extract the scores (probabilities), followed by the | ||||||
|  |         # geometrical data used to derive potential bounding box | ||||||
|  |         # coordinates that surround text | ||||||
|  |         scoresData = scores[0, 0, y] | ||||||
|  |         xData0 = geometry1[0, 0, y] | ||||||
|  |         xData1 = geometry1[0, 1, y] | ||||||
|  |         xData2 = geometry1[0, 2, y] | ||||||
|  |         xData3 = geometry1[0, 3, y] | ||||||
|  |         anglesData = geometry2[0, 0, y] | ||||||
|  |  | ||||||
|  |         # loop over the number of columns | ||||||
|  |         for x in range(0, numCols): | ||||||
|  |             # if our score does not have sufficient probability, | ||||||
|  |             # ignore it | ||||||
|  |             if scoresData[x] < _conf_threshold: | ||||||
|  |                 continue | ||||||
|  |  | ||||||
|  |             # compute the offset factor as our resulting feature | ||||||
|  |             # maps will be 4x smaller than the input image | ||||||
|  |             (offsetX, offsetY) = (x * 4.0, y * 4.0) | ||||||
|  |  | ||||||
|  |             # extract the rotation angle for the prediction and | ||||||
|  |             # then compute the sin and cosine | ||||||
|  |             angle = anglesData[x] | ||||||
|  |             cos = np.cos(angle) | ||||||
|  |             sin = np.sin(angle) | ||||||
|  |  | ||||||
|  |             # use the geometry volume to derive the width and height | ||||||
|  |             # of the bounding box | ||||||
|  |             h = xData0[x] + xData2[x] | ||||||
|  |             w = xData1[x] + xData3[x] | ||||||
|  |  | ||||||
|  |             # compute both the starting and ending (x, y)-coordinates | ||||||
|  |             # for the text prediction bounding box | ||||||
|  |             endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) | ||||||
|  |             endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) | ||||||
|  |             startX = int(endX - w) | ||||||
|  |             startY = int(endY - h) | ||||||
|  |  | ||||||
|  |             # add the bounding box coordinates and probability score | ||||||
|  |             # to our respective lists | ||||||
|  |             rects.append((startX, startY, endX, endY)) | ||||||
|  |             confidences.append(scoresData[x]) | ||||||
|  |             angles.append(angle) | ||||||
|  |  | ||||||
|  |     # return a tuple of the bounding boxes and associated confidences | ||||||
|  |     return (rects, confidences, angles) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def decode_east(nnet_packet, **kwargs): | ||||||
|  |     scores = nnet_packet.get_tensor(0) | ||||||
|  |     geometry1 = nnet_packet.get_tensor(1) | ||||||
|  |     geometry2 = nnet_packet.get_tensor(2) | ||||||
|  |     bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2 | ||||||
|  |                                                ) | ||||||
|  |     boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles)) | ||||||
|  |     boxesangles = (boxes, angles) | ||||||
|  |     return boxesangles | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def show_east(boxesangles, frame, **kwargs): | ||||||
|  |     bboxes = boxesangles[0] | ||||||
|  |     angles = boxesangles[1] | ||||||
|  |     for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles): | ||||||
|  |         width = abs(X0 - X1) | ||||||
|  |         height = abs(Y0 - Y1) | ||||||
|  |         cX = int(X0 + width * 0.5) | ||||||
|  |         cY = int(Y0 + height * 0.5) | ||||||
|  |  | ||||||
|  |         rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1)) | ||||||
|  |         points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1) | ||||||
|  |         cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8) | ||||||
|  |  | ||||||
|  |     return frame | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def order_points(pts): | ||||||
|  |     rect = np.zeros((4, 2), dtype="float32") | ||||||
|  |     s = pts.sum(axis=1) | ||||||
|  |     rect[0] = pts[np.argmin(s)] | ||||||
|  |     rect[2] = pts[np.argmax(s)] | ||||||
|  |     diff = np.diff(pts, axis=1) | ||||||
|  |     rect[1] = pts[np.argmin(diff)] | ||||||
|  |     rect[3] = pts[np.argmax(diff)] | ||||||
|  |     return rect | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def four_point_transform(image, pts): | ||||||
|  |     rect = order_points(pts) | ||||||
|  |     (tl, tr, br, bl) = rect | ||||||
|  |  | ||||||
|  |     widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) | ||||||
|  |     widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) | ||||||
|  |     maxWidth = max(int(widthA), int(widthB)) | ||||||
|  |  | ||||||
|  |     heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) | ||||||
|  |     heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) | ||||||
|  |     maxHeight = max(int(heightA), int(heightB)) | ||||||
|  |  | ||||||
|  |     dst = np.array([ | ||||||
|  |         [0, 0], | ||||||
|  |         [maxWidth - 1, 0], | ||||||
|  |         [maxWidth - 1, maxHeight - 1], | ||||||
|  |         [0, maxHeight - 1]], dtype="float32") | ||||||
|  |  | ||||||
|  |     M = cv2.getPerspectiveTransform(rect, dst) | ||||||
|  |     warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) | ||||||
|  |  | ||||||
|  |     return warped | ||||||
							
								
								
									
										61
									
								
								camera/text.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										61
									
								
								camera/text.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,61 @@ | |||||||
|  |  | ||||||
|  | class HostSeqSync: | ||||||
|  |     def __init__(self): | ||||||
|  |         self.imfFrames = [] | ||||||
|  |  | ||||||
|  |     def add_msg(self, msg): | ||||||
|  |         self.imfFrames.append(msg) | ||||||
|  |  | ||||||
|  |     def get_msg(self, target_seq): | ||||||
|  |         for i, imgFrame in enumerate(self.imfFrames): | ||||||
|  |             if target_seq == imgFrame.getSequenceNum(): | ||||||
|  |                 self.imfFrames = self.imfFrames[i:] | ||||||
|  |                 break | ||||||
|  |         return self.imfFrames[0] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class CTCCodec(object): | ||||||
|  |     """ Convert between text-label and text-index """ | ||||||
|  |  | ||||||
|  |     def __init__(self, characters): | ||||||
|  |         # characters (str): set of the possible characters. | ||||||
|  |         dict_character = list(characters) | ||||||
|  |  | ||||||
|  |         self.dict = {} | ||||||
|  |         for i, char in enumerate(dict_character): | ||||||
|  |             self.dict[char] = i + 1 | ||||||
|  |  | ||||||
|  |         self.characters = dict_character | ||||||
|  |         # print(self.characters) | ||||||
|  |         # input() | ||||||
|  |  | ||||||
|  |     def decode(self, preds): | ||||||
|  |         """ convert text-index into text-label. """ | ||||||
|  |         texts = [] | ||||||
|  |         index = 0 | ||||||
|  |         # Select max probabilty (greedy decoding) then decode index to character | ||||||
|  |         preds = preds.astype(np.float16) | ||||||
|  |         preds_index = np.argmax(preds, 2) | ||||||
|  |         preds_index = preds_index.transpose(1, 0) | ||||||
|  |         preds_index_reshape = preds_index.reshape(-1) | ||||||
|  |         preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0]) | ||||||
|  |  | ||||||
|  |         for l in preds_sizes: | ||||||
|  |             t = preds_index_reshape[index:index + l] | ||||||
|  |  | ||||||
|  |             # NOTE: t might be zero size | ||||||
|  |             if t.shape[0] == 0: | ||||||
|  |                 continue | ||||||
|  |  | ||||||
|  |             char_list = [] | ||||||
|  |             for i in range(l): | ||||||
|  |                 # removing repeated characters and blank. | ||||||
|  |                 if not (i > 0 and t[i - 1] == t[i]): | ||||||
|  |                     if self.characters[t[i]] != '#': | ||||||
|  |                         char_list.append(self.characters[t[i]]) | ||||||
|  |             text = ''.join(char_list) | ||||||
|  |             texts.append(text) | ||||||
|  |  | ||||||
|  |             index += l | ||||||
|  |  | ||||||
|  |         return texts | ||||||
							
								
								
									
										229
									
								
								east.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										229
									
								
								east.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,229 @@ | |||||||
|  | import cv2 | ||||||
|  | import depthai | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | _conf_threshold = 0.5 | ||||||
|  |  | ||||||
|  | def get_cv_rotated_rect(bbox, angle): | ||||||
|  |     x0, y0, x1, y1 = bbox | ||||||
|  |     width = abs(x0 - x1) | ||||||
|  |     height = abs(y0 - y1) | ||||||
|  |     x = x0 + width * 0.5 | ||||||
|  |     y = y0 + height * 0.5 | ||||||
|  |     return ([x.tolist(), y.tolist()], [width.tolist(), height.tolist()], np.rad2deg(angle)) | ||||||
|  |  | ||||||
|  | def rotated_Rectangle(bbox, angle): | ||||||
|  |     X0, Y0, X1, Y1 = bbox | ||||||
|  |     width = abs(X0 - X1) | ||||||
|  |     height = abs(Y0 - Y1) | ||||||
|  |     x = int(X0 + width * 0.5) | ||||||
|  |     y = int(Y0 + height * 0.5) | ||||||
|  |  | ||||||
|  |     pt1_1 = (int(x + width / 2), int(y + height / 2)) | ||||||
|  |     pt2_1 = (int(x + width / 2), int(y - height / 2)) | ||||||
|  |     pt3_1 = (int(x - width / 2), int(y - height / 2)) | ||||||
|  |     pt4_1 = (int(x - width / 2), int(y + height / 2)) | ||||||
|  |  | ||||||
|  |     t = np.array([[np.cos(angle), -np.sin(angle), x - x * np.cos(angle) + y * np.sin(angle)], | ||||||
|  |                   [np.sin(angle), np.cos(angle), y - x * np.sin(angle) - y * np.cos(angle)], | ||||||
|  |                   [0, 0, 1]]) | ||||||
|  |  | ||||||
|  |     tmp_pt1_1 = np.array([[pt1_1[0]], [pt1_1[1]], [1]]) | ||||||
|  |     tmp_pt1_2 = np.dot(t, tmp_pt1_1) | ||||||
|  |     pt1_2 = (int(tmp_pt1_2[0][0]), int(tmp_pt1_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt2_1 = np.array([[pt2_1[0]], [pt2_1[1]], [1]]) | ||||||
|  |     tmp_pt2_2 = np.dot(t, tmp_pt2_1) | ||||||
|  |     pt2_2 = (int(tmp_pt2_2[0][0]), int(tmp_pt2_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt3_1 = np.array([[pt3_1[0]], [pt3_1[1]], [1]]) | ||||||
|  |     tmp_pt3_2 = np.dot(t, tmp_pt3_1) | ||||||
|  |     pt3_2 = (int(tmp_pt3_2[0][0]), int(tmp_pt3_2[1][0])) | ||||||
|  |  | ||||||
|  |     tmp_pt4_1 = np.array([[pt4_1[0]], [pt4_1[1]], [1]]) | ||||||
|  |     tmp_pt4_2 = np.dot(t, tmp_pt4_1) | ||||||
|  |     pt4_2 = (int(tmp_pt4_2[0][0]), int(tmp_pt4_2[1][0])) | ||||||
|  |  | ||||||
|  |     points = np.array([pt1_2, pt2_2, pt3_2, pt4_2]) | ||||||
|  |  | ||||||
|  |     return points | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def non_max_suppression(boxes, probs=None, angles=None, overlapThresh=0.3): | ||||||
|  |     # if there are no boxes, return an empty list | ||||||
|  |     if len(boxes) == 0: | ||||||
|  |         return [], [] | ||||||
|  |  | ||||||
|  |     # if the bounding boxes are integers, convert them to floats -- this | ||||||
|  |     # is important since we'll be doing a bunch of divisions | ||||||
|  |     if boxes.dtype.kind == "i": | ||||||
|  |         boxes = boxes.astype("float") | ||||||
|  |  | ||||||
|  |     # initialize the list of picked indexes | ||||||
|  |     pick = [] | ||||||
|  |  | ||||||
|  |     # grab the coordinates of the bounding boxes | ||||||
|  |     x1 = boxes[:, 0] | ||||||
|  |     y1 = boxes[:, 1] | ||||||
|  |     x2 = boxes[:, 2] | ||||||
|  |     y2 = boxes[:, 3] | ||||||
|  |  | ||||||
|  |     # compute the area of the bounding boxes and grab the indexes to sort | ||||||
|  |     # (in the case that no probabilities are provided, simply sort on the bottom-left y-coordinate) | ||||||
|  |     area = (x2 - x1 + 1) * (y2 - y1 + 1) | ||||||
|  |     idxs = y2 | ||||||
|  |  | ||||||
|  |     # if probabilities are provided, sort on them instead | ||||||
|  |     if probs is not None: | ||||||
|  |         idxs = probs | ||||||
|  |  | ||||||
|  |     # sort the indexes | ||||||
|  |     idxs = np.argsort(idxs) | ||||||
|  |  | ||||||
|  |     # keep looping while some indexes still remain in the indexes list | ||||||
|  |     while len(idxs) > 0: | ||||||
|  |         # grab the last index in the indexes list and add the index value to the list of picked indexes | ||||||
|  |         last = len(idxs) - 1 | ||||||
|  |         i = idxs[last] | ||||||
|  |         pick.append(i) | ||||||
|  |  | ||||||
|  |         # find the largest (x, y) coordinates for the start of the bounding box and the smallest (x, y) coordinates for the end of the bounding box | ||||||
|  |         xx1 = np.maximum(x1[i], x1[idxs[:last]]) | ||||||
|  |         yy1 = np.maximum(y1[i], y1[idxs[:last]]) | ||||||
|  |         xx2 = np.minimum(x2[i], x2[idxs[:last]]) | ||||||
|  |         yy2 = np.minimum(y2[i], y2[idxs[:last]]) | ||||||
|  |  | ||||||
|  |         # compute the width and height of the bounding box | ||||||
|  |         w = np.maximum(0, xx2 - xx1 + 1) | ||||||
|  |         h = np.maximum(0, yy2 - yy1 + 1) | ||||||
|  |  | ||||||
|  |         # compute the ratio of overlap | ||||||
|  |         overlap = (w * h) / area[idxs[:last]] | ||||||
|  |  | ||||||
|  |         # delete all indexes from the index list that have overlap greater than the provided overlap threshold | ||||||
|  |         idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))) | ||||||
|  |  | ||||||
|  |     # return only the bounding boxes that were picked | ||||||
|  |     return boxes[pick].astype("int"), angles[pick] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def decode_predictions(scores, geometry1, geometry2): | ||||||
|  |     # grab the number of rows and columns from the scores volume, then | ||||||
|  |     # initialize our set of bounding box rectangles and corresponding | ||||||
|  |     # confidence scores | ||||||
|  |     (numRows, numCols) = scores.shape[2:4] | ||||||
|  |     rects = [] | ||||||
|  |     confidences = [] | ||||||
|  |     angles = [] | ||||||
|  |  | ||||||
|  |     # loop over the number of rows | ||||||
|  |     for y in range(0, numRows): | ||||||
|  |         # extract the scores (probabilities), followed by the | ||||||
|  |         # geometrical data used to derive potential bounding box | ||||||
|  |         # coordinates that surround text | ||||||
|  |         scoresData = scores[0, 0, y] | ||||||
|  |         xData0 = geometry1[0, 0, y] | ||||||
|  |         xData1 = geometry1[0, 1, y] | ||||||
|  |         xData2 = geometry1[0, 2, y] | ||||||
|  |         xData3 = geometry1[0, 3, y] | ||||||
|  |         anglesData = geometry2[0, 0, y] | ||||||
|  |  | ||||||
|  |         # loop over the number of columns | ||||||
|  |         for x in range(0, numCols): | ||||||
|  |             # if our score does not have sufficient probability, | ||||||
|  |             # ignore it | ||||||
|  |             if scoresData[x] < _conf_threshold: | ||||||
|  |                 continue | ||||||
|  |  | ||||||
|  |             # compute the offset factor as our resulting feature | ||||||
|  |             # maps will be 4x smaller than the input image | ||||||
|  |             (offsetX, offsetY) = (x * 4.0, y * 4.0) | ||||||
|  |  | ||||||
|  |             # extract the rotation angle for the prediction and | ||||||
|  |             # then compute the sin and cosine | ||||||
|  |             angle = anglesData[x] | ||||||
|  |             cos = np.cos(angle) | ||||||
|  |             sin = np.sin(angle) | ||||||
|  |  | ||||||
|  |             # use the geometry volume to derive the width and height | ||||||
|  |             # of the bounding box | ||||||
|  |             h = xData0[x] + xData2[x] | ||||||
|  |             w = xData1[x] + xData3[x] | ||||||
|  |  | ||||||
|  |             # compute both the starting and ending (x, y)-coordinates | ||||||
|  |             # for the text prediction bounding box | ||||||
|  |             endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) | ||||||
|  |             endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) | ||||||
|  |             startX = int(endX - w) | ||||||
|  |             startY = int(endY - h) | ||||||
|  |  | ||||||
|  |             # add the bounding box coordinates and probability score | ||||||
|  |             # to our respective lists | ||||||
|  |             rects.append((startX, startY, endX, endY)) | ||||||
|  |             confidences.append(scoresData[x]) | ||||||
|  |             angles.append(angle) | ||||||
|  |  | ||||||
|  |     # return a tuple of the bounding boxes and associated confidences | ||||||
|  |     return (rects, confidences, angles) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def decode_east(nnet_packet, **kwargs): | ||||||
|  |     scores = nnet_packet.get_tensor(0) | ||||||
|  |     geometry1 = nnet_packet.get_tensor(1) | ||||||
|  |     geometry2 = nnet_packet.get_tensor(2) | ||||||
|  |     bboxes, confs, angles = decode_predictions(scores, geometry1, geometry2 | ||||||
|  |                                                ) | ||||||
|  |     boxes, angles = non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles)) | ||||||
|  |     boxesangles = (boxes, angles) | ||||||
|  |     return boxesangles | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def show_east(boxesangles, frame, **kwargs): | ||||||
|  |     bboxes = boxesangles[0] | ||||||
|  |     angles = boxesangles[1] | ||||||
|  |     for ((X0, Y0, X1, Y1), angle) in zip(bboxes, angles): | ||||||
|  |         width = abs(X0 - X1) | ||||||
|  |         height = abs(Y0 - Y1) | ||||||
|  |         cX = int(X0 + width * 0.5) | ||||||
|  |         cY = int(Y0 + height * 0.5) | ||||||
|  |  | ||||||
|  |         rotRect = ((cX, cY), ((X1 - X0), (Y1 - Y0)), angle * (-1)) | ||||||
|  |         points = rotated_Rectangle(frame, rotRect, color=(255, 0, 0), thickness=1) | ||||||
|  |         cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8) | ||||||
|  |  | ||||||
|  |     return frame | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def order_points(pts): | ||||||
|  |     rect = np.zeros((4, 2), dtype="float32") | ||||||
|  |     s = pts.sum(axis=1) | ||||||
|  |     rect[0] = pts[np.argmin(s)] | ||||||
|  |     rect[2] = pts[np.argmax(s)] | ||||||
|  |     diff = np.diff(pts, axis=1) | ||||||
|  |     rect[1] = pts[np.argmin(diff)] | ||||||
|  |     rect[3] = pts[np.argmax(diff)] | ||||||
|  |     return rect | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def four_point_transform(image, pts): | ||||||
|  |     rect = order_points(pts) | ||||||
|  |     (tl, tr, br, bl) = rect | ||||||
|  |  | ||||||
|  |     widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) | ||||||
|  |     widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) | ||||||
|  |     maxWidth = max(int(widthA), int(widthB)) | ||||||
|  |  | ||||||
|  |     heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) | ||||||
|  |     heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) | ||||||
|  |     maxHeight = max(int(heightA), int(heightB)) | ||||||
|  |  | ||||||
|  |     dst = np.array([ | ||||||
|  |         [0, 0], | ||||||
|  |         [maxWidth - 1, 0], | ||||||
|  |         [maxWidth - 1, maxHeight - 1], | ||||||
|  |         [0, maxHeight - 1]], dtype="float32") | ||||||
|  |  | ||||||
|  |     M = cv2.getPerspectiveTransform(rect, dst) | ||||||
|  |     warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) | ||||||
|  |  | ||||||
|  |     return warped | ||||||
| @@ -1,11 +1,10 @@ | |||||||
| # -*- coding: utf-8 -*- | # -*- coding: utf-8 -*- | ||||||
| # Generated by the protocol buffer compiler.  DO NOT EDIT! | # Generated by the protocol buffer compiler.  DO NOT EDIT! | ||||||
| # source: events/events.proto | # source: events/events.proto | ||||||
|  | """Generated protocol buffer code.""" | ||||||
| from google.protobuf.internal import enum_type_wrapper | from google.protobuf.internal import builder as _builder | ||||||
| from google.protobuf import descriptor as _descriptor | from google.protobuf import descriptor as _descriptor | ||||||
| from google.protobuf import message as _message | from google.protobuf import descriptor_pool as _descriptor_pool | ||||||
| from google.protobuf import reflection as _reflection |  | ||||||
| from google.protobuf import symbol_database as _symbol_database | from google.protobuf import symbol_database as _symbol_database | ||||||
| # @@protoc_insertion_point(imports) | # @@protoc_insertion_point(imports) | ||||||
|  |  | ||||||
| @@ -15,744 +14,40 @@ _sym_db = _symbol_database.Default() | |||||||
| from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 | from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 | ||||||
|  |  | ||||||
|  |  | ||||||
| DESCRIPTOR = _descriptor.FileDescriptor( | DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x05\x12\x0b\n\x03top\x18\x03 \x01(\x05\x12\r\n\x05right\x18\x04 \x01(\x05\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x05\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\nZ\x08./eventsb\x06proto3') | ||||||
|   name='events/events.proto', |  | ||||||
|   package='robocar.events', |  | ||||||
|   syntax='proto3', |  | ||||||
|   serialized_options=b'Z\006events', |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   serialized_pb=b'\n\x13\x65vents/events.proto\x12\x0erobocar.events\x1a\x1fgoogle/protobuf/timestamp.proto\"T\n\x08\x46rameRef\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12.\n\ncreated_at\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"C\n\x0c\x46rameMessage\x12$\n\x02id\x18\x01 \x01(\x0b\x32\x18.robocar.events.FrameRef\x12\r\n\x05\x66rame\x18\x02 \x01(\x0c\"d\n\x0fSteeringMessage\x12\x10\n\x08steering\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"d\n\x0fThrottleMessage\x12\x10\n\x08throttle\x18\x01 \x01(\x02\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"A\n\x10\x44riveModeMessage\x12-\n\ndrive_mode\x18\x01 \x01(\x0e\x32\x19.robocar.events.DriveMode\"f\n\x0eObjectsMessage\x12\'\n\x07objects\x18\x01 \x03(\x0b\x32\x16.robocar.events.Object\x12+\n\tframe_ref\x18\x02 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x80\x01\n\x06Object\x12(\n\x04type\x18\x01 \x01(\x0e\x32\x1a.robocar.events.TypeObject\x12\x0c\n\x04left\x18\x02 \x01(\x05\x12\x0b\n\x03top\x18\x03 \x01(\x05\x12\r\n\x05right\x18\x04 \x01(\x05\x12\x0e\n\x06\x62ottom\x18\x05 \x01(\x05\x12\x12\n\nconfidence\x18\x06 \x01(\x02\"&\n\x13SwitchRecordMessage\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\"\x8c\x01\n\x0bRoadMessage\x12&\n\x07\x63ontour\x18\x01 \x03(\x0b\x32\x15.robocar.events.Point\x12(\n\x07\x65llipse\x18\x02 \x01(\x0b\x32\x17.robocar.events.Ellipse\x12+\n\tframe_ref\x18\x03 \x01(\x0b\x32\x18.robocar.events.FrameRef\"\x1d\n\x05Point\x12\t\n\x01x\x18\x01 \x01(\x05\x12\t\n\x01y\x18\x02 \x01(\x05\"r\n\x07\x45llipse\x12%\n\x06\x63\x65nter\x18\x01 \x01(\x0b\x32\x15.robocar.events.Point\x12\r\n\x05width\x18\x02 \x01(\x05\x12\x0e\n\x06height\x18\x03 \x01(\x05\x12\r\n\x05\x61ngle\x18\x04 \x01(\x02\x12\x12\n\nconfidence\x18\x05 \x01(\x02\"\x82\x01\n\rRecordMessage\x12+\n\x05\x66rame\x18\x01 \x01(\x0b\x32\x1c.robocar.events.FrameMessage\x12\x31\n\x08steering\x18\x02 \x01(\x0b\x32\x1f.robocar.events.SteeringMessage\x12\x11\n\trecordSet\x18\x03 \x01(\t*-\n\tDriveMode\x12\x0b\n\x07INVALID\x10\x00\x12\x08\n\x04USER\x10\x01\x12\t\n\x05PILOT\x10\x02*2\n\nTypeObject\x12\x07\n\x03\x41NY\x10\x00\x12\x07\n\x03\x43\x41R\x10\x01\x12\x08\n\x04\x42UMP\x10\x02\x12\x08\n\x04PLOT\x10\x03\x42\x08Z\x06\x65ventsb\x06proto3' |  | ||||||
|   , |  | ||||||
|   dependencies=[google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,]) |  | ||||||
|  |  | ||||||
| _DRIVEMODE = _descriptor.EnumDescriptor( |  | ||||||
|   name='DriveMode', |  | ||||||
|   full_name='robocar.events.DriveMode', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   values=[ |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='INVALID', index=0, number=0, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='USER', index=1, number=1, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='PILOT', index=2, number=2, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   containing_type=None, |  | ||||||
|   serialized_options=None, |  | ||||||
|   serialized_start=1196, |  | ||||||
|   serialized_end=1241, |  | ||||||
| ) |  | ||||||
| _sym_db.RegisterEnumDescriptor(_DRIVEMODE) |  | ||||||
|  |  | ||||||
| DriveMode = enum_type_wrapper.EnumTypeWrapper(_DRIVEMODE) |  | ||||||
| _TYPEOBJECT = _descriptor.EnumDescriptor( |  | ||||||
|   name='TypeObject', |  | ||||||
|   full_name='robocar.events.TypeObject', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   values=[ |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='ANY', index=0, number=0, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='CAR', index=1, number=1, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='BUMP', index=2, number=2, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.EnumValueDescriptor( |  | ||||||
|       name='PLOT', index=3, number=3, |  | ||||||
|       serialized_options=None, |  | ||||||
|       type=None, |  | ||||||
|       create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   containing_type=None, |  | ||||||
|   serialized_options=None, |  | ||||||
|   serialized_start=1243, |  | ||||||
|   serialized_end=1293, |  | ||||||
| ) |  | ||||||
| _sym_db.RegisterEnumDescriptor(_TYPEOBJECT) |  | ||||||
|  |  | ||||||
| TypeObject = enum_type_wrapper.EnumTypeWrapper(_TYPEOBJECT) |  | ||||||
| INVALID = 0 |  | ||||||
| USER = 1 |  | ||||||
| PILOT = 2 |  | ||||||
| ANY = 0 |  | ||||||
| CAR = 1 |  | ||||||
| BUMP = 2 |  | ||||||
| PLOT = 3 |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _FRAMEREF = _descriptor.Descriptor( |  | ||||||
|   name='FrameRef', |  | ||||||
|   full_name='robocar.events.FrameRef', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='name', full_name='robocar.events.FrameRef.name', index=0, |  | ||||||
|       number=1, type=9, cpp_type=9, label=1, |  | ||||||
|       has_default_value=False, default_value=b"".decode('utf-8'), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='id', full_name='robocar.events.FrameRef.id', index=1, |  | ||||||
|       number=2, type=9, cpp_type=9, label=1, |  | ||||||
|       has_default_value=False, default_value=b"".decode('utf-8'), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='created_at', full_name='robocar.events.FrameRef.created_at', index=2, |  | ||||||
|       number=3, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=72, |  | ||||||
|   serialized_end=156, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _FRAMEMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='FrameMessage', |  | ||||||
|   full_name='robocar.events.FrameMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='id', full_name='robocar.events.FrameMessage.id', index=0, |  | ||||||
|       number=1, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame', full_name='robocar.events.FrameMessage.frame', index=1, |  | ||||||
|       number=2, type=12, cpp_type=9, label=1, |  | ||||||
|       has_default_value=False, default_value=b"", |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=158, |  | ||||||
|   serialized_end=225, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _STEERINGMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='SteeringMessage', |  | ||||||
|   full_name='robocar.events.SteeringMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='steering', full_name='robocar.events.SteeringMessage.steering', index=0, |  | ||||||
|       number=1, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='confidence', full_name='robocar.events.SteeringMessage.confidence', index=1, |  | ||||||
|       number=2, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame_ref', full_name='robocar.events.SteeringMessage.frame_ref', index=2, |  | ||||||
|       number=3, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=227, |  | ||||||
|   serialized_end=327, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _THROTTLEMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='ThrottleMessage', |  | ||||||
|   full_name='robocar.events.ThrottleMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='throttle', full_name='robocar.events.ThrottleMessage.throttle', index=0, |  | ||||||
|       number=1, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='confidence', full_name='robocar.events.ThrottleMessage.confidence', index=1, |  | ||||||
|       number=2, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame_ref', full_name='robocar.events.ThrottleMessage.frame_ref', index=2, |  | ||||||
|       number=3, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=329, |  | ||||||
|   serialized_end=429, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _DRIVEMODEMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='DriveModeMessage', |  | ||||||
|   full_name='robocar.events.DriveModeMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='drive_mode', full_name='robocar.events.DriveModeMessage.drive_mode', index=0, |  | ||||||
|       number=1, type=14, cpp_type=8, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=431, |  | ||||||
|   serialized_end=496, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _OBJECTSMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='ObjectsMessage', |  | ||||||
|   full_name='robocar.events.ObjectsMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='objects', full_name='robocar.events.ObjectsMessage.objects', index=0, |  | ||||||
|       number=1, type=11, cpp_type=10, label=3, |  | ||||||
|       has_default_value=False, default_value=[], |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame_ref', full_name='robocar.events.ObjectsMessage.frame_ref', index=1, |  | ||||||
|       number=2, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=498, |  | ||||||
|   serialized_end=600, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _OBJECT = _descriptor.Descriptor( |  | ||||||
|   name='Object', |  | ||||||
|   full_name='robocar.events.Object', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='type', full_name='robocar.events.Object.type', index=0, |  | ||||||
|       number=1, type=14, cpp_type=8, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='left', full_name='robocar.events.Object.left', index=1, |  | ||||||
|       number=2, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='top', full_name='robocar.events.Object.top', index=2, |  | ||||||
|       number=3, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='right', full_name='robocar.events.Object.right', index=3, |  | ||||||
|       number=4, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='bottom', full_name='robocar.events.Object.bottom', index=4, |  | ||||||
|       number=5, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='confidence', full_name='robocar.events.Object.confidence', index=5, |  | ||||||
|       number=6, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=603, |  | ||||||
|   serialized_end=731, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _SWITCHRECORDMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='SwitchRecordMessage', |  | ||||||
|   full_name='robocar.events.SwitchRecordMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='enabled', full_name='robocar.events.SwitchRecordMessage.enabled', index=0, |  | ||||||
|       number=1, type=8, cpp_type=7, label=1, |  | ||||||
|       has_default_value=False, default_value=False, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=733, |  | ||||||
|   serialized_end=771, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _ROADMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='RoadMessage', |  | ||||||
|   full_name='robocar.events.RoadMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='contour', full_name='robocar.events.RoadMessage.contour', index=0, |  | ||||||
|       number=1, type=11, cpp_type=10, label=3, |  | ||||||
|       has_default_value=False, default_value=[], |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='ellipse', full_name='robocar.events.RoadMessage.ellipse', index=1, |  | ||||||
|       number=2, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame_ref', full_name='robocar.events.RoadMessage.frame_ref', index=2, |  | ||||||
|       number=3, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=774, |  | ||||||
|   serialized_end=914, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _POINT = _descriptor.Descriptor( |  | ||||||
|   name='Point', |  | ||||||
|   full_name='robocar.events.Point', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='x', full_name='robocar.events.Point.x', index=0, |  | ||||||
|       number=1, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='y', full_name='robocar.events.Point.y', index=1, |  | ||||||
|       number=2, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=916, |  | ||||||
|   serialized_end=945, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _ELLIPSE = _descriptor.Descriptor( |  | ||||||
|   name='Ellipse', |  | ||||||
|   full_name='robocar.events.Ellipse', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='center', full_name='robocar.events.Ellipse.center', index=0, |  | ||||||
|       number=1, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='width', full_name='robocar.events.Ellipse.width', index=1, |  | ||||||
|       number=2, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='height', full_name='robocar.events.Ellipse.height', index=2, |  | ||||||
|       number=3, type=5, cpp_type=1, label=1, |  | ||||||
|       has_default_value=False, default_value=0, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='angle', full_name='robocar.events.Ellipse.angle', index=3, |  | ||||||
|       number=4, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='confidence', full_name='robocar.events.Ellipse.confidence', index=4, |  | ||||||
|       number=5, type=2, cpp_type=6, label=1, |  | ||||||
|       has_default_value=False, default_value=float(0), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=947, |  | ||||||
|   serialized_end=1061, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| _RECORDMESSAGE = _descriptor.Descriptor( |  | ||||||
|   name='RecordMessage', |  | ||||||
|   full_name='robocar.events.RecordMessage', |  | ||||||
|   filename=None, |  | ||||||
|   file=DESCRIPTOR, |  | ||||||
|   containing_type=None, |  | ||||||
|   create_key=_descriptor._internal_create_key, |  | ||||||
|   fields=[ |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='frame', full_name='robocar.events.RecordMessage.frame', index=0, |  | ||||||
|       number=1, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='steering', full_name='robocar.events.RecordMessage.steering', index=1, |  | ||||||
|       number=2, type=11, cpp_type=10, label=1, |  | ||||||
|       has_default_value=False, default_value=None, |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|     _descriptor.FieldDescriptor( |  | ||||||
|       name='recordSet', full_name='robocar.events.RecordMessage.recordSet', index=2, |  | ||||||
|       number=3, type=9, cpp_type=9, label=1, |  | ||||||
|       has_default_value=False, default_value=b"".decode('utf-8'), |  | ||||||
|       message_type=None, enum_type=None, containing_type=None, |  | ||||||
|       is_extension=False, extension_scope=None, |  | ||||||
|       serialized_options=None, file=DESCRIPTOR,  create_key=_descriptor._internal_create_key), |  | ||||||
|   ], |  | ||||||
|   extensions=[ |  | ||||||
|   ], |  | ||||||
|   nested_types=[], |  | ||||||
|   enum_types=[ |  | ||||||
|   ], |  | ||||||
|   serialized_options=None, |  | ||||||
|   is_extendable=False, |  | ||||||
|   syntax='proto3', |  | ||||||
|   extension_ranges=[], |  | ||||||
|   oneofs=[ |  | ||||||
|   ], |  | ||||||
|   serialized_start=1064, |  | ||||||
|   serialized_end=1194, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
| _FRAMEREF.fields_by_name['created_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP |  | ||||||
| _FRAMEMESSAGE.fields_by_name['id'].message_type = _FRAMEREF |  | ||||||
| _STEERINGMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF |  | ||||||
| _THROTTLEMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF |  | ||||||
| _DRIVEMODEMESSAGE.fields_by_name['drive_mode'].enum_type = _DRIVEMODE |  | ||||||
| _OBJECTSMESSAGE.fields_by_name['objects'].message_type = _OBJECT |  | ||||||
| _OBJECTSMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF |  | ||||||
| _OBJECT.fields_by_name['type'].enum_type = _TYPEOBJECT |  | ||||||
| _ROADMESSAGE.fields_by_name['contour'].message_type = _POINT |  | ||||||
| _ROADMESSAGE.fields_by_name['ellipse'].message_type = _ELLIPSE |  | ||||||
| _ROADMESSAGE.fields_by_name['frame_ref'].message_type = _FRAMEREF |  | ||||||
| _ELLIPSE.fields_by_name['center'].message_type = _POINT |  | ||||||
| _RECORDMESSAGE.fields_by_name['frame'].message_type = _FRAMEMESSAGE |  | ||||||
| _RECORDMESSAGE.fields_by_name['steering'].message_type = _STEERINGMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['FrameRef'] = _FRAMEREF |  | ||||||
| DESCRIPTOR.message_types_by_name['FrameMessage'] = _FRAMEMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['SteeringMessage'] = _STEERINGMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['ThrottleMessage'] = _THROTTLEMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['DriveModeMessage'] = _DRIVEMODEMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['ObjectsMessage'] = _OBJECTSMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['Object'] = _OBJECT |  | ||||||
| DESCRIPTOR.message_types_by_name['SwitchRecordMessage'] = _SWITCHRECORDMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['RoadMessage'] = _ROADMESSAGE |  | ||||||
| DESCRIPTOR.message_types_by_name['Point'] = _POINT |  | ||||||
| DESCRIPTOR.message_types_by_name['Ellipse'] = _ELLIPSE |  | ||||||
| DESCRIPTOR.message_types_by_name['RecordMessage'] = _RECORDMESSAGE |  | ||||||
| DESCRIPTOR.enum_types_by_name['DriveMode'] = _DRIVEMODE |  | ||||||
| DESCRIPTOR.enum_types_by_name['TypeObject'] = _TYPEOBJECT |  | ||||||
| _sym_db.RegisterFileDescriptor(DESCRIPTOR) |  | ||||||
|  |  | ||||||
| FrameRef = _reflection.GeneratedProtocolMessageType('FrameRef', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _FRAMEREF, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.FrameRef) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(FrameRef) |  | ||||||
|  |  | ||||||
| FrameMessage = _reflection.GeneratedProtocolMessageType('FrameMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _FRAMEMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.FrameMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(FrameMessage) |  | ||||||
|  |  | ||||||
| SteeringMessage = _reflection.GeneratedProtocolMessageType('SteeringMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _STEERINGMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.SteeringMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(SteeringMessage) |  | ||||||
|  |  | ||||||
| ThrottleMessage = _reflection.GeneratedProtocolMessageType('ThrottleMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _THROTTLEMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.ThrottleMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(ThrottleMessage) |  | ||||||
|  |  | ||||||
| DriveModeMessage = _reflection.GeneratedProtocolMessageType('DriveModeMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _DRIVEMODEMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.DriveModeMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(DriveModeMessage) |  | ||||||
|  |  | ||||||
| ObjectsMessage = _reflection.GeneratedProtocolMessageType('ObjectsMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _OBJECTSMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.ObjectsMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(ObjectsMessage) |  | ||||||
|  |  | ||||||
| Object = _reflection.GeneratedProtocolMessageType('Object', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _OBJECT, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.Object) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(Object) |  | ||||||
|  |  | ||||||
| SwitchRecordMessage = _reflection.GeneratedProtocolMessageType('SwitchRecordMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _SWITCHRECORDMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.SwitchRecordMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(SwitchRecordMessage) |  | ||||||
|  |  | ||||||
| RoadMessage = _reflection.GeneratedProtocolMessageType('RoadMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _ROADMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.RoadMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(RoadMessage) |  | ||||||
|  |  | ||||||
| Point = _reflection.GeneratedProtocolMessageType('Point', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _POINT, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.Point) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(Point) |  | ||||||
|  |  | ||||||
| Ellipse = _reflection.GeneratedProtocolMessageType('Ellipse', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _ELLIPSE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.Ellipse) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(Ellipse) |  | ||||||
|  |  | ||||||
| RecordMessage = _reflection.GeneratedProtocolMessageType('RecordMessage', (_message.Message,), { |  | ||||||
|   'DESCRIPTOR' : _RECORDMESSAGE, |  | ||||||
|   '__module__' : 'events.events_pb2' |  | ||||||
|   # @@protoc_insertion_point(class_scope:robocar.events.RecordMessage) |  | ||||||
|   }) |  | ||||||
| _sym_db.RegisterMessage(RecordMessage) |  | ||||||
|  |  | ||||||
|  | _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) | ||||||
|  | _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'events.events_pb2', globals()) | ||||||
|  | if _descriptor._USE_C_DESCRIPTORS == False: | ||||||
|  |  | ||||||
|   DESCRIPTOR._options = None |   DESCRIPTOR._options = None | ||||||
|  |   DESCRIPTOR._serialized_options = b'Z\010./events' | ||||||
|  |   _DRIVEMODE._serialized_start=1196 | ||||||
|  |   _DRIVEMODE._serialized_end=1241 | ||||||
|  |   _TYPEOBJECT._serialized_start=1243 | ||||||
|  |   _TYPEOBJECT._serialized_end=1293 | ||||||
|  |   _FRAMEREF._serialized_start=72 | ||||||
|  |   _FRAMEREF._serialized_end=156 | ||||||
|  |   _FRAMEMESSAGE._serialized_start=158 | ||||||
|  |   _FRAMEMESSAGE._serialized_end=225 | ||||||
|  |   _STEERINGMESSAGE._serialized_start=227 | ||||||
|  |   _STEERINGMESSAGE._serialized_end=327 | ||||||
|  |   _THROTTLEMESSAGE._serialized_start=329 | ||||||
|  |   _THROTTLEMESSAGE._serialized_end=429 | ||||||
|  |   _DRIVEMODEMESSAGE._serialized_start=431 | ||||||
|  |   _DRIVEMODEMESSAGE._serialized_end=496 | ||||||
|  |   _OBJECTSMESSAGE._serialized_start=498 | ||||||
|  |   _OBJECTSMESSAGE._serialized_end=600 | ||||||
|  |   _OBJECT._serialized_start=603 | ||||||
|  |   _OBJECT._serialized_end=731 | ||||||
|  |   _SWITCHRECORDMESSAGE._serialized_start=733 | ||||||
|  |   _SWITCHRECORDMESSAGE._serialized_end=771 | ||||||
|  |   _ROADMESSAGE._serialized_start=774 | ||||||
|  |   _ROADMESSAGE._serialized_end=914 | ||||||
|  |   _POINT._serialized_start=916 | ||||||
|  |   _POINT._serialized_end=945 | ||||||
|  |   _ELLIPSE._serialized_start=947 | ||||||
|  |   _ELLIPSE._serialized_end=1061 | ||||||
|  |   _RECORDMESSAGE._serialized_start=1064 | ||||||
|  |   _RECORDMESSAGE._serialized_end=1194 | ||||||
| # @@protoc_insertion_point(module_scope) | # @@protoc_insertion_point(module_scope) | ||||||
|   | |||||||
							
								
								
									
										274
									
								
								main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										274
									
								
								main.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,274 @@ | |||||||
|  | #!/usr/bin/env python3 | ||||||
|  |  | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | import cv2 | ||||||
|  | import numpy as np | ||||||
|  | import depthai as dai | ||||||
|  | import east | ||||||
|  | import blobconverter | ||||||
|  |  | ||||||
|  | class HostSeqSync: | ||||||
|  |     def __init__(self): | ||||||
|  |         self.imfFrames = [] | ||||||
|  |     def add_msg(self, msg): | ||||||
|  |         self.imfFrames.append(msg) | ||||||
|  |     def get_msg(self, target_seq): | ||||||
|  |         for i, imgFrame in enumerate(self.imfFrames): | ||||||
|  |             if target_seq == imgFrame.getSequenceNum(): | ||||||
|  |                 self.imfFrames = self.imfFrames[i:] | ||||||
|  |                 break | ||||||
|  |         return self.imfFrames[0] | ||||||
|  |  | ||||||
|  | pipeline = dai.Pipeline() | ||||||
|  | version = "2021.2" | ||||||
|  | pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2) | ||||||
|  |  | ||||||
|  | colorCam = pipeline.create(dai.node.ColorCamera) | ||||||
|  | colorCam.setPreviewSize(256, 256) | ||||||
|  | colorCam.setVideoSize(1024, 1024) # 4 times larger in both axis | ||||||
|  | colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) | ||||||
|  | colorCam.setInterleaved(False) | ||||||
|  | colorCam.setBoardSocket(dai.CameraBoardSocket.RGB) | ||||||
|  | colorCam.setFps(10) | ||||||
|  |  | ||||||
|  | controlIn = pipeline.create(dai.node.XLinkIn) | ||||||
|  | controlIn.setStreamName('control') | ||||||
|  | controlIn.out.link(colorCam.inputControl) | ||||||
|  |  | ||||||
|  | cam_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  | cam_xout.setStreamName('video') | ||||||
|  | colorCam.video.link(cam_xout.input) | ||||||
|  |  | ||||||
|  | # --------------------------------------- | ||||||
|  | # 1st stage NN - text-detection | ||||||
|  | # --------------------------------------- | ||||||
|  |  | ||||||
|  | nn = pipeline.create(dai.node.NeuralNetwork) | ||||||
|  | nn.setBlobPath(blobconverter.from_zoo(name="east_text_detection_256x256",zoo_type="depthai",shaves=6, version=version)) | ||||||
|  | colorCam.preview.link(nn.input) | ||||||
|  |  | ||||||
|  | nn_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  | nn_xout.setStreamName('detections') | ||||||
|  | nn.out.link(nn_xout.input) | ||||||
|  |  | ||||||
|  | # --------------------------------------- | ||||||
|  | # 2nd stage NN - text-recognition-0012 | ||||||
|  | # --------------------------------------- | ||||||
|  |  | ||||||
|  | manip = pipeline.create(dai.node.ImageManip) | ||||||
|  | manip.setWaitForConfigInput(True) | ||||||
|  |  | ||||||
|  | manip_img = pipeline.create(dai.node.XLinkIn) | ||||||
|  | manip_img.setStreamName('manip_img') | ||||||
|  | manip_img.out.link(manip.inputImage) | ||||||
|  |  | ||||||
|  | manip_cfg = pipeline.create(dai.node.XLinkIn) | ||||||
|  | manip_cfg.setStreamName('manip_cfg') | ||||||
|  | manip_cfg.out.link(manip.inputConfig) | ||||||
|  |  | ||||||
|  | manip_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  | manip_xout.setStreamName('manip_out') | ||||||
|  |  | ||||||
|  | nn2 = pipeline.create(dai.node.NeuralNetwork) | ||||||
|  | nn2.setBlobPath(blobconverter.from_zoo(name="text-recognition-0012", shaves=6, version=version)) | ||||||
|  | nn2.setNumInferenceThreads(2) | ||||||
|  | manip.out.link(nn2.input) | ||||||
|  | manip.out.link(manip_xout.input) | ||||||
|  |  | ||||||
|  | nn2_xout = pipeline.create(dai.node.XLinkOut) | ||||||
|  | nn2_xout.setStreamName("recognitions") | ||||||
|  | nn2.out.link(nn2_xout.input) | ||||||
|  |  | ||||||
|  | def to_tensor_result(packet): | ||||||
|  |     return { | ||||||
|  |         name: np.array(packet.getLayerFp16(name)) | ||||||
|  |         for name in [tensor.name for tensor in packet.getRaw().tensors] | ||||||
|  |     } | ||||||
|  |  | ||||||
|  | def to_planar(frame): | ||||||
|  |     return frame.transpose(2, 0, 1).flatten() | ||||||
|  |  | ||||||
|  | with dai.Device(pipeline) as device: | ||||||
|  |     q_vid = device.getOutputQueue("video", 4, blocking=False) | ||||||
|  |     # This should be set to block, but would get to some extreme queuing/latency! | ||||||
|  |     q_det = device.getOutputQueue("detections", 4, blocking=False) | ||||||
|  |  | ||||||
|  |     q_rec = device.getOutputQueue("recognitions", 4, blocking=True) | ||||||
|  |  | ||||||
|  |     q_manip_img = device.getInputQueue("manip_img") | ||||||
|  |     q_manip_cfg = device.getInputQueue("manip_cfg") | ||||||
|  |     q_manip_out = device.getOutputQueue("manip_out", 4, blocking=False) | ||||||
|  |  | ||||||
|  |     controlQueue = device.getInputQueue('control') | ||||||
|  |  | ||||||
|  |     frame = None | ||||||
|  |     cropped_stacked = None | ||||||
|  |     rotated_rectangles = [] | ||||||
|  |     rec_pushed = 0 | ||||||
|  |     rec_received = 0 | ||||||
|  |     host_sync = HostSeqSync() | ||||||
|  |  | ||||||
|  |     class CTCCodec(object): | ||||||
|  |         """ Convert between text-label and text-index """ | ||||||
|  |         def __init__(self, characters): | ||||||
|  |             # characters (str): set of the possible characters. | ||||||
|  |             dict_character = list(characters) | ||||||
|  |  | ||||||
|  |             self.dict = {} | ||||||
|  |             for i, char in enumerate(dict_character): | ||||||
|  |                 self.dict[char] = i + 1 | ||||||
|  |  | ||||||
|  |             self.characters = dict_character | ||||||
|  |             #print(self.characters) | ||||||
|  |             #input() | ||||||
|  |         def decode(self, preds): | ||||||
|  |             """ convert text-index into text-label. """ | ||||||
|  |             texts = [] | ||||||
|  |             index = 0 | ||||||
|  |             # Select max probabilty (greedy decoding) then decode index to character | ||||||
|  |             preds = preds.astype(np.float16) | ||||||
|  |             preds_index = np.argmax(preds, 2) | ||||||
|  |             preds_index = preds_index.transpose(1, 0) | ||||||
|  |             preds_index_reshape = preds_index.reshape(-1) | ||||||
|  |             preds_sizes = np.array([preds_index.shape[1]] * preds_index.shape[0]) | ||||||
|  |  | ||||||
|  |             for l in preds_sizes: | ||||||
|  |                 t = preds_index_reshape[index:index + l] | ||||||
|  |  | ||||||
|  |                 # NOTE: t might be zero size | ||||||
|  |                 if t.shape[0] == 0: | ||||||
|  |                     continue | ||||||
|  |  | ||||||
|  |                 char_list = [] | ||||||
|  |                 for i in range(l): | ||||||
|  |                     # removing repeated characters and blank. | ||||||
|  |                     if not (i > 0 and t[i - 1] == t[i]): | ||||||
|  |                         if self.characters[t[i]] != '#': | ||||||
|  |                             char_list.append(self.characters[t[i]]) | ||||||
|  |                 text = ''.join(char_list) | ||||||
|  |                 texts.append(text) | ||||||
|  |  | ||||||
|  |                 index += l | ||||||
|  |  | ||||||
|  |             return texts | ||||||
|  |  | ||||||
|  |     characters = '0123456789abcdefghijklmnopqrstuvwxyz#' | ||||||
|  |     codec = CTCCodec(characters) | ||||||
|  |  | ||||||
|  |     ctrl = dai.CameraControl() | ||||||
|  |     ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.CONTINUOUS_VIDEO) | ||||||
|  |     ctrl.setAutoFocusTrigger() | ||||||
|  |     controlQueue.send(ctrl) | ||||||
|  |  | ||||||
|  |     while True: | ||||||
|  |         vid_in = q_vid.tryGet() | ||||||
|  |         if vid_in is not None: | ||||||
|  |             host_sync.add_msg(vid_in) | ||||||
|  |  | ||||||
|  |         # Multiple recognition results may be available, read until queue is empty | ||||||
|  |         while True: | ||||||
|  |             in_rec = q_rec.tryGet() | ||||||
|  |             if in_rec is None: | ||||||
|  |                 break | ||||||
|  |             rec_data = bboxes = np.array(in_rec.getFirstLayerFp16()).reshape(30,1,37) | ||||||
|  |             decoded_text = codec.decode(rec_data)[0] | ||||||
|  |             pos = rotated_rectangles[rec_received] | ||||||
|  |             print("{:2}: {:20}".format(rec_received, decoded_text), | ||||||
|  |                 "center({:3},{:3}) size({:3},{:3}) angle{:5.1f} deg".format( | ||||||
|  |                     int(pos[0][0]), int(pos[0][1]), pos[1][0], pos[1][1], pos[2])) | ||||||
|  |             # Draw the text on the right side of 'cropped_stacked' - placeholder | ||||||
|  |             if cropped_stacked is not None: | ||||||
|  |                 cv2.putText(cropped_stacked, decoded_text, | ||||||
|  |                                 (120 + 10 , 32 * rec_received + 24), | ||||||
|  |                                 cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2) | ||||||
|  |                 cv2.imshow('cropped_stacked', cropped_stacked) | ||||||
|  |             rec_received += 1 | ||||||
|  |  | ||||||
|  |         if cv2.waitKey(1) == ord('q'): | ||||||
|  |             break | ||||||
|  |  | ||||||
|  |         if rec_received >= rec_pushed: | ||||||
|  |             in_det = q_det.tryGet() | ||||||
|  |             if in_det is not None: | ||||||
|  |                 frame = host_sync.get_msg(in_det.getSequenceNum()).getCvFrame().copy() | ||||||
|  |  | ||||||
|  |                 scores, geom1, geom2 = to_tensor_result(in_det).values() | ||||||
|  |                 scores = np.reshape(scores, (1, 1, 64, 64)) | ||||||
|  |                 geom1 = np.reshape(geom1, (1, 4, 64, 64)) | ||||||
|  |                 geom2 = np.reshape(geom2, (1, 1, 64, 64)) | ||||||
|  |  | ||||||
|  |                 bboxes, confs, angles = east.decode_predictions(scores, geom1, geom2) | ||||||
|  |                 boxes, angles = east.non_max_suppression(np.array(bboxes), probs=confs, angles=np.array(angles)) | ||||||
|  |                 rotated_rectangles = [ | ||||||
|  |                     east.get_cv_rotated_rect(bbox, angle * -1) | ||||||
|  |                     for (bbox, angle) in zip(boxes, angles) | ||||||
|  |                 ] | ||||||
|  |  | ||||||
|  |                 rec_received = 0 | ||||||
|  |                 rec_pushed = len(rotated_rectangles) | ||||||
|  |                 if rec_pushed: | ||||||
|  |                     print("====== Pushing for recognition, count:", rec_pushed) | ||||||
|  |                 cropped_stacked = None | ||||||
|  |                 for idx, rotated_rect in enumerate(rotated_rectangles): | ||||||
|  |                     # Detections are done on 256x256 frames, we are sending back 1024x1024 | ||||||
|  |                     # That's why we multiply center and size values by 4 | ||||||
|  |                     rotated_rect[0][0] = rotated_rect[0][0] * 4 | ||||||
|  |                     rotated_rect[0][1] = rotated_rect[0][1] * 4 | ||||||
|  |                     rotated_rect[1][0] = rotated_rect[1][0] * 4 | ||||||
|  |                     rotated_rect[1][1] = rotated_rect[1][1] * 4 | ||||||
|  |  | ||||||
|  |                     # Draw detection crop area on input frame | ||||||
|  |                     points = np.int0(cv2.boxPoints(rotated_rect)) | ||||||
|  |                     print(rotated_rect) | ||||||
|  |                     cv2.polylines(frame, [points], isClosed=True, color=(255, 0, 0), thickness=1, lineType=cv2.LINE_8) | ||||||
|  |  | ||||||
|  |                     # TODO make it work taking args like in OpenCV: | ||||||
|  |                     # rr = ((256, 256), (128, 64), 30) | ||||||
|  |                     rr = dai.RotatedRect() | ||||||
|  |                     rr.center.x    = rotated_rect[0][0] | ||||||
|  |                     rr.center.y    = rotated_rect[0][1] | ||||||
|  |                     rr.size.width  = rotated_rect[1][0] | ||||||
|  |                     rr.size.height = rotated_rect[1][1] | ||||||
|  |                     rr.angle       = rotated_rect[2] | ||||||
|  |                     cfg = dai.ImageManipConfig() | ||||||
|  |                     cfg.setCropRotatedRect(rr, False) | ||||||
|  |                     cfg.setResize(120, 32) | ||||||
|  |                     # Send frame and config to device | ||||||
|  |                     if idx == 0: | ||||||
|  |                         w,h,c = frame.shape | ||||||
|  |                         imgFrame = dai.ImgFrame() | ||||||
|  |                         imgFrame.setData(to_planar(frame)) | ||||||
|  |                         imgFrame.setType(dai.ImgFrame.Type.BGR888p) | ||||||
|  |                         imgFrame.setWidth(w) | ||||||
|  |                         imgFrame.setHeight(h) | ||||||
|  |                         q_manip_img.send(imgFrame) | ||||||
|  |                     else: | ||||||
|  |                         cfg.setReusePreviousImage(True) | ||||||
|  |                     q_manip_cfg.send(cfg) | ||||||
|  |  | ||||||
|  |                     # Get manipulated image from the device | ||||||
|  |                     transformed = q_manip_out.get().getCvFrame() | ||||||
|  |  | ||||||
|  |                     rec_placeholder_img = np.zeros((32, 200, 3), np.uint8) | ||||||
|  |                     transformed = np.hstack((transformed, rec_placeholder_img)) | ||||||
|  |                     if cropped_stacked is None: | ||||||
|  |                         cropped_stacked = transformed | ||||||
|  |                     else: | ||||||
|  |                         cropped_stacked = np.vstack((cropped_stacked, transformed)) | ||||||
|  |  | ||||||
|  |         if cropped_stacked is not None: | ||||||
|  |             cv2.imshow('cropped_stacked', cropped_stacked) | ||||||
|  |  | ||||||
|  |         if frame is not None: | ||||||
|  |             cv2.imshow('frame', frame) | ||||||
|  |  | ||||||
|  |         key = cv2.waitKey(1) | ||||||
|  |         if  key == ord('q'): | ||||||
|  |             break | ||||||
|  |         elif key == ord('t'): | ||||||
|  |             print("Autofocus trigger (and disable continuous)") | ||||||
|  |             ctrl = dai.CameraControl() | ||||||
|  |             ctrl.setAutoFocusMode(dai.CameraControl.AutoFocusMode.AUTO) | ||||||
|  |             ctrl.setAutoFocusTrigger() | ||||||
|  |             controlQueue.send(ctrl) | ||||||
| @@ -5,3 +5,5 @@ opencv-python~=4.5.5.62 | |||||||
| google~=3.0.0 | google~=3.0.0 | ||||||
| google-api-core~=2.4.0 | google-api-core~=2.4.0 | ||||||
| setuptools==60.5.0 | setuptools==60.5.0 | ||||||
|  | protobuf3 | ||||||
|  | blobconverter>=1.2.9 | ||||||
		Reference in New Issue
	
	Block a user