Compare commits
7 Commits
1.8.0-py3
...
b8e011e7cd
Author | SHA1 | Date | |
---|---|---|---|
b8e011e7cd | |||
3a376dd5a3 | |||
2076b4491a | |||
37bb0fff2d | |||
a5354e5653 | |||
84a8b11942 | |||
9ec80414c9 |
2
.dockerignore
Normal file
2
.dockerignore
Normal file
@ -0,0 +1,2 @@
|
||||
venv
|
||||
|
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
venv
|
||||
/src/robocars_sagemaker_container.egg-info/
|
@ -6,10 +6,12 @@ WORKDIR /usr/src
|
||||
|
||||
RUN python3 setup.py sdist
|
||||
|
||||
FROM tensorflow/tensorflow:1.8.0-gpu-py3
|
||||
#FROM tensorflow/tensorflow:1.8.0-py3
|
||||
FROM tensorflow/tensorflow:1.15.0-gpu-py3
|
||||
|
||||
#tensorflow-serving-api-python3==1.7.0
|
||||
RUN pip3 list && pip3 install numpy boto3 six awscli flask==0.11 Jinja2==2.9 gevent gunicorn keras==2.1.3 pillow h5py \
|
||||
#tensorflow-serving-api-python3==1.7.0
|
||||
COPY requirements.txt .
|
||||
RUN pip3 install --upgrade pip==20.0.2 && pip3 list && pip3 install -r requirements.txt \
|
||||
&& pip3 list
|
||||
|
||||
WORKDIR /root
|
||||
@ -32,5 +34,5 @@ RUN pip3 install robocars_sagemaker_container-1.0.0.tar.gz
|
||||
|
||||
RUN rm robocars_sagemaker_container-1.0.0.tar.gz
|
||||
|
||||
ENTRYPOINT ["entry.py"]
|
||||
ENTRYPOINT ["train"]
|
||||
|
||||
|
@ -1,22 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
job_name=$1
|
||||
if [ -z $job_name ]
|
||||
if [[ -z ${job_name} ]]
|
||||
then
|
||||
echo 'Provide model name'
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
echo 'Creating training job '$1
|
||||
|
||||
training_image="<replace_me>.dkr.ecr.eu-west-1.amazonaws.com/robocars:1.8.0-gpu-py3"
|
||||
iam_role_arn="arn:aws:iam::<replace_me>:role/service-role/<replace_me>"
|
||||
training_image="117617958416.dkr.ecr.eu-west-1.amazonaws.com/robocars:tensorflow"
|
||||
iam_role_arn="arn:aws:iam::117617958416:role/robocar-training"
|
||||
DATA_BUCKET="s3://robocars-cyrilix-learning/input"
|
||||
DATA_OUTPUT="s3://robocars-cyrilix-learning/output"
|
||||
|
||||
aws sagemaker create-training-job \
|
||||
--training-job-name $job_name \
|
||||
--training-job-name ${job_name} \
|
||||
--hyper-parameters '{ "sagemaker_region": "\"eu-west-1\"", "with_slide": "true" }' \
|
||||
--algorithm-specification TrainingImage=$training_image,TrainingInputMode=File \
|
||||
--role-arn $iam_role_arn \
|
||||
--input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<replace_me>", "S3DataDistributionType": "FullyReplicated" }} }]' \
|
||||
--output-data-config S3OutputPath=s3://<replace_me> \
|
||||
--algorithm-specification TrainingImage="${training_image}",TrainingInputMode=File \
|
||||
--role-arn ${iam_role_arn} \
|
||||
--input-data-config "[{ \"ChannelName\": \"train\", \"DataSource\": { \"S3DataSource\": { \"S3DataType\": \"S3Prefix\", \"S3Uri\": \"${DATA_BUCKET}\", \"S3DataDistributionType\": \"FullyReplicated\" }} }]" \
|
||||
--output-data-config S3OutputPath=${DATA_OUTPUT} \
|
||||
--resource-config InstanceType=ml.p2.xlarge,InstanceCount=1,VolumeSizeInGB=1 \
|
||||
--stopping-condition MaxRuntimeInSeconds=1800
|
||||
|
12
requirements.txt
Normal file
12
requirements.txt
Normal file
@ -0,0 +1,12 @@
|
||||
sagemaker-container-support==1.1.3
|
||||
numpy==1.18.1
|
||||
boto3==1.12.11
|
||||
six==1.14.0
|
||||
awscli==1.18.11
|
||||
flask==0.12.5
|
||||
Jinja2==2.11.1
|
||||
gevent==1.4.0
|
||||
gunicorn==19.10.0
|
||||
keras==2.1.3
|
||||
pillow==7.0.0
|
||||
h5py==2.10.0
|
10
setup.py
10
setup.py
@ -1,8 +1,8 @@
|
||||
import os
|
||||
from glob import glob
|
||||
from os.path import basename
|
||||
from os.path import splitext
|
||||
|
||||
from glob import glob
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
|
||||
@ -19,9 +19,13 @@ setup(
|
||||
py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')],
|
||||
|
||||
classifiers=[
|
||||
'Programming Language :: Python :: 3.5',
|
||||
'Programming Language :: Python :: 3.7',
|
||||
],
|
||||
|
||||
entry_points={
|
||||
'console_scripts': [
|
||||
'train=tf_container.train_entry_point:train',
|
||||
]
|
||||
},
|
||||
install_requires=['sagemaker-container-support'],
|
||||
extras_require={},
|
||||
)
|
||||
|
@ -1,21 +1,38 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import container_support as cs
|
||||
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
import zipfile
|
||||
from keras.preprocessing.image import load_img, img_to_array
|
||||
import numpy as np
|
||||
|
||||
from keras.layers import Input, Dense, merge
|
||||
from keras.models import Model
|
||||
from keras.layers import Convolution2D, MaxPooling2D, Reshape, BatchNormalization
|
||||
from keras.layers import Activation, Dropout, Flatten, Dense
|
||||
import container_support as cs
|
||||
import json
|
||||
import numpy as np
|
||||
import re
|
||||
import tensorflow as tf
|
||||
import zipfile
|
||||
from keras import backend as K
|
||||
from keras import callbacks
|
||||
from keras.layers import Convolution2D
|
||||
from keras.layers import Dropout, Flatten, Dense
|
||||
from keras.layers import Input
|
||||
from keras.models import Model
|
||||
from keras.preprocessing.image import load_img, img_to_array
|
||||
from tensorflow.python.client import device_lib
|
||||
|
||||
|
||||
def get_data(root_dir, filename):
|
||||
print('load data from file ' + filename)
|
||||
d = json.load(open(os.path.join(root_dir, filename)))
|
||||
return [d['user/angle'], root_dir, d['cam/image_array']]
|
||||
|
||||
|
||||
numbers = re.compile(r'(\d+)')
|
||||
|
||||
|
||||
def unzip_file(root, f):
|
||||
zip_ref = zipfile.ZipFile(os.path.join(root, f), 'r')
|
||||
zip_ref.extractall(root)
|
||||
zip_ref.close()
|
||||
|
||||
|
||||
def train():
|
||||
env = cs.TrainingEnvironment()
|
||||
|
||||
@ -23,104 +40,95 @@ def train():
|
||||
os.system('mkdir -p logs')
|
||||
|
||||
# ### Loading the files ###
|
||||
# ** You need to copy all your files to the directory where you are runing this notebook into a folder named "data" **
|
||||
# ** You need to copy all your files to the directory where you are runing this notebook **
|
||||
# ** into a folder named "data" **
|
||||
|
||||
numbers = re.compile(r'(\d+)')
|
||||
data = []
|
||||
def get_data(root,f):
|
||||
d = json.load(open(os.path.join(root,f)))
|
||||
if ('pilot/throttle' in d):
|
||||
return [d['user/mode'],d['user/throttle'],d['user/angle'],root,d['cam/image_array'],d['pilot/throttle'],d['pilot/angle']]
|
||||
else:
|
||||
return [d['user/mode'],d['user/throttle'],d['user/angle'],root,d['cam/image_array']]
|
||||
def numericalSort(value):
|
||||
parts = numbers.split(value)
|
||||
parts[1::2] = map(int, parts[1::2])
|
||||
return parts
|
||||
def unzip_file(root,f):
|
||||
zip_ref = zipfile.ZipFile(os.path.join(root,f), 'r')
|
||||
zip_ref.extractall(root)
|
||||
zip_ref.close()
|
||||
|
||||
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
|
||||
for f in files:
|
||||
for f in files:
|
||||
if f.endswith('.zip'):
|
||||
unzip_file(root, f)
|
||||
|
||||
for root, dirs, files in os.walk('/opt/ml/input/data/train'):
|
||||
data.extend([get_data(root,f) for f in sorted(files, key=numericalSort) if f.startswith('record') and f.endswith('.json')])
|
||||
data.extend(
|
||||
[get_data(root, f) for f in sorted(files, key=str.lower) if f.startswith('record') and f.endswith('.json')])
|
||||
|
||||
# Normalize / correct data
|
||||
data = [d for d in data if d[1] > 0.1]
|
||||
for d in data:
|
||||
if d[1] < 0.2:
|
||||
d[1] = 0.2
|
||||
|
||||
# ### Loading throttle and angle ###
|
||||
|
||||
angle = [d[2] for d in data]
|
||||
throttle = [d[1] for d in data]
|
||||
angle = [d[0] for d in data]
|
||||
angle_array = np.array(angle)
|
||||
throttle_array = np.array(throttle)
|
||||
if (len(data[0]) > 5):
|
||||
pilot_angle = [d[6] for d in data]
|
||||
pilot_throttle = [d[5] for d in data]
|
||||
pilot_angle_array = np.array(pilot_angle)
|
||||
pilot_throttle_array = np.array(pilot_throttle)
|
||||
else:
|
||||
pilot_angle = []
|
||||
pilot_throttle = []
|
||||
|
||||
|
||||
# ### Loading images ###
|
||||
images = np.array([img_to_array(load_img(os.path.join(d[3],d[4]))) for d in data],'f')
|
||||
images = np.array([img_to_array(load_img(os.path.join(d[1], d[2]))) for d in data], 'f')
|
||||
|
||||
# slide images vs orders
|
||||
if env.hyperparameters.get('with_slide', False):
|
||||
images = images[:len(images)-2]
|
||||
images = images[:len(images) - 2]
|
||||
angle_array = angle_array[2:]
|
||||
throttle_array = throttle_array[2:]
|
||||
|
||||
# ### Start training ###
|
||||
def linear_bin(a):
|
||||
a = a + 1
|
||||
b = round(a / (2/14))
|
||||
b = round(a / (2 / 14))
|
||||
arr = np.zeros(15)
|
||||
arr[int(b)] = 1
|
||||
return arr
|
||||
|
||||
logs = callbacks.TensorBoard(log_dir='logs', histogram_freq=0, write_graph=True, write_images=True)
|
||||
save_best = callbacks.ModelCheckpoint('/opt/ml/model/model_cat', monitor='angle_out_loss', verbose=1, save_best_only=True, mode='min')
|
||||
early_stop = callbacks.EarlyStopping(monitor='angle_out_loss',
|
||||
min_delta=.0005,
|
||||
patience=10,
|
||||
verbose=1,
|
||||
mode='auto')
|
||||
img_in = Input(shape=(120, 160, 3), name='img_in') # First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
save_best = callbacks.ModelCheckpoint('/opt/ml/model/model_cat', monitor='val_loss', verbose=1,
|
||||
save_best_only=True, mode='min')
|
||||
early_stop = callbacks.EarlyStopping(monitor='val_loss',
|
||||
min_delta=.0005,
|
||||
patience=10,
|
||||
verbose=1,
|
||||
mode='auto')
|
||||
# Only for export model to tensorflow
|
||||
sess = tf.Session()
|
||||
K.set_session(sess)
|
||||
|
||||
# First layer, input layer, Shape comes from camera.py resolution, RGB
|
||||
img_in = Input(shape=(128, 160, 3),
|
||||
name='img_in')
|
||||
x = img_in
|
||||
x = Convolution2D(24, (5,5), strides=(2,2), activation='relu')(x) # 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
|
||||
x = Convolution2D(32, (5,5), strides=(2,2), activation='relu')(x) # 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
|
||||
x = Convolution2D(64, (5,5), strides=(2,2), activation='relu')(x) # 64 features, 5px5p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3,3), strides=(2,2), activation='relu')(x) # 64 features, 3px3p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3,3), strides=(1,1), activation='relu')(x) # 64 features, 3px3p kernal window, 1wx1h stride, relu
|
||||
# 24 features, 5 pixel x 5 pixel kernel (convolution, feauture) window, 2wx2h stride, relu activation
|
||||
x = Convolution2D(24, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 32 features, 5px5p kernel window, 2wx2h stride, relu activatiion
|
||||
x = Convolution2D(32, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 5px5p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (5, 5), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 3px3p kernal window, 2wx2h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(2, 2), activation='relu')(x)
|
||||
# 64 features, 3px3p kernal window, 1wx1h stride, relu
|
||||
x = Convolution2D(64, (3, 3), strides=(1, 1), activation='relu')(x)
|
||||
|
||||
# Possibly add MaxPooling (will make it less sensitive to position in image). Camera angle fixed, so may not to be needed
|
||||
|
||||
x = Flatten(name='flattened')(x) # Flatten to 1D (Fully connected)
|
||||
x = Dense(100, activation='relu')(x) # Classify the data into 100 features, make all negatives 0
|
||||
x = Flatten(name='flattened')(x) # Flatten to 1D (Fully connected)
|
||||
x = Dense(100, activation='relu')(x) # Classify the data into 100 features, make all negatives 0
|
||||
x = Dropout(.1)(x)
|
||||
x = Dense(50, activation='relu')(x)
|
||||
x = Dropout(.1)(x) # Randomly drop out 10% of the neurons (Prevent overfitting)
|
||||
#categorical output of the angle
|
||||
# Randomly drop out 10% of the neurons (Prevent overfitting)
|
||||
x = Dropout(.1)(x)
|
||||
# categorical output of the angle
|
||||
callbacks_list = [save_best, early_stop, logs]
|
||||
angle_out = Dense(15, activation='softmax', name='angle_out')(x) # Connect every input with every output and output 15 hidden units. Use Softmax to give percentage. 15 categories and find best one based off percentage 0.0-1.0
|
||||
# Connect every input with every output and output 15 hidden units. Use Softmax to give percentage.
|
||||
# 15 categories and find best one based off percentage 0.0-1.0
|
||||
angle_out = Dense(15, activation='softmax', name='angle_out')(x)
|
||||
|
||||
#continous output of throttle
|
||||
throttle_out = Dense(1, activation='relu', name='throttle_out')(x) # Reduce to 1 number, Positive number only
|
||||
angle_cat_array = np.array([linear_bin(a) for a in angle_array])
|
||||
model = Model(inputs=[img_in], outputs=[angle_out, throttle_out])
|
||||
model = Model(inputs=[img_in], outputs=[angle_out])
|
||||
model.compile(optimizer='adam',
|
||||
loss={'angle_out': 'categorical_crossentropy',
|
||||
'throttle_out': 'mean_absolute_error'},
|
||||
loss_weights={'angle_out': 0.9, 'throttle_out': .001})
|
||||
model.fit({'img_in':images},{'angle_out': angle_cat_array, 'throttle_out': throttle_array}, batch_size=32, epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
|
||||
loss={'angle_out': 'categorical_crossentropy', },
|
||||
loss_weights={'angle_out': 0.9 })
|
||||
model.fit({'img_in': images}, {'angle_out': angle_cat_array, }, batch_size=32,
|
||||
epochs=100, verbose=1, validation_split=0.2, shuffle=True, callbacks=callbacks_list)
|
||||
|
||||
# Save model for tensorflow using
|
||||
builder = tf.saved_model.builder.SavedModelBuilder("/opt/ml/model/tfModel")
|
||||
|
||||
# Tag the model, required for Go
|
||||
builder.add_meta_graph_and_variables(sess, ["myTag"])
|
||||
builder.save()
|
||||
sess.close()
|
||||
|
Reference in New Issue
Block a user